Earth Measurements

Student Guide for Experiments #1 through #6

Version 1.0

PAALAX 7

Warranty

Parallax warrants its products against defects in materials and workmanship for a period of 90 days. If you discover a defect, Parallax
will, at its option, repair, replace, or refund the purchase price. Simply call for a Return Merchandise Authorization (RMA) number,
write the number on the outside of the box and send it back to Parallax. Please include your name, telephone number, shipping
address, and a description of the problem. We will return your product, or its replacement, using the same shipping method used to
ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund. Parallax
will refund the purchase price of the product, excluding shipping / handling costs. This does not apply if the product has been alterned
or damaged.

Copyrights and Trademarks

This documentation is copyright 1999 by Parallax, Inc. BASIC Stamp is a registered trademark of Parallax, Inc. Other brand and
product names are trademarks or registered trademarks of their respective holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any
legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and any costs or
recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not responsible for any
personal damage, including that to life and health, resulting from use of any of our products.

Internet Access

We maintain internet systems for your use. These may be used to obtain software, communicate with members of Parallax, and
communicate with other customers. Access information is shown below:

E-mail: stampsinclass@parallaxinc.com
Ftp: ftp.parallaxinc.com and ftp.stampsinclass.com
Web: http://www.parallaxinc.com and http://www.stampsinclass.com

Internet BASIC Stamp Discussion List

We maintain two e-mail discussion lists for people interested in BASIC Stamps. The BASIC Stamp list server includes engineers,
hobbyists, and enthusiasts. The list works like this: lots of people subscribe to the list, and then all questions and answers to the list are
distributed to all subscribers. It's a fun, fast, and free way to discuss BASIC Stamp issues and get answers to technical questions. To
subscribe to the BASIC Stamp list, send e-mail to majordomo@parallaxinc.com and write subscribe stamps in the body of the
message. This list generates about 40 messages per day.

The Stamps in Class list is for students and educators who wish to share educational ideas. To subscribe to this list go to
http://www.stampsinclass.com and look for the E-groups list. This list generates about 5 messages per day.

Contents

Preface 2
AUAIENCE AN TERACNEI'S GUILESueueueriecineierereiaineeasianeastesessessetsessessessstsesssssssasasssasesssasessessesssssssssssssssssssssssssasssssasssssas 2
Copyright N0 REPIOUUCTIONoueeveeeereenereeaircemereeaeeeeeaeesenesaseaseesessesessstaseessessssssssstssesssessesssesssessesssessesssssssssness 3
SPECIAI CONLIIDULOTS ..eveeiereecrereiceeeceiee st eser s sssessesss s sastasessess s s sas s sssessssssesasessesssessesastasesness 3

Experiment #1: Temperature Transducer 5
PAIES FEOUITET «...eeeeeeeeieeicieericisetseetetstetseas st seas st sttt bt s st st s st s b st bbbt st s s b e bt asaaesstssbassseasssssnen 6
BUIL Tt cooeereeeecereenecnseeeeecssetetise st esse s essees bt es st s e b es st et et et bbbt astssebsseses 6
PrOGIam it c..ceceeesecieeeicireitctsetstet sttt sttt sst s stas sttt sttt s sttt sttt bbbt st b bttt b ettt ten 8
CRAITENGE ...ttt sttt sttt st st st sttt st sttt bbbt sebeas 22

Experiment #2: Data Logging 23
PaIES REQUITEA ...ttt ittt sse s sst s ss s ss s s st et st s et bsnsstssssastsssseas 24
BUIA Tt oottt s es st ssse b s ass b et ta et et bbbt et aeens 25
PrOGIam I ettt ettt bs e e ss s s st bt st st st st st et st beas 26
CRAITENGE ...ttt sttt st sttt s st st s sttt st st st st st e beas 45

Appendix A: Parts Listing and Sources 48

Appendix B: Building the AD592 Temperature Probe 54

Appendix C: Resistor Color Code 55

Appendix D: Data Sheets 57

Earth Measurements Student Guide Version 1.0 « Page 1

Preface

Preface

The subject of these six lessons is Earth Measurements. Think of yourself as a geologist, wanting to
know more about El Nino, the famous effect in the waters off the coast of South America that changes
weather patterns all over the world. You are going to need lots of measurements. Or think of yourself as the
operator of a water treatment plant, where a city full of people is counting on you to deliver pure water day
and night. You are going to have to monitor the water and operate a computer-controlled plant to pump it
across the city. Or, think of yourself as responsible for an orchard of apples. You need to keep close track of
the weather so that you will keep one step ahead on irrigation, pest control and bringing your crop to market.
These are just a few examples of what we mean by Earth Measurements.

Of course Earth Measurements as a human interest were around long before microcomputers were
ever imagined. Whether you think of yourself back 50 years or 500, or even 5,000 years, you can picture
humans looking around and testing the wind. Computers, especially small, specialized ones allow
measurements to be taken at points where no human can go, and more importantly, lots of measurements,
tirelessly. Computers can summarize all that data and even put it up for a view on a worldwide computer
network. They can also be programmed to close the loop, to do things like turn on a pump when a field needs
to be irrigated, automatically. These were things that were hardly imagined 50 years ago.

Earth Measurements is not much different from measurement in other settings. For example home
appliances such as clothes dryers, ovens and room thermostats use microcontrollers for measurement and
control, as do instruments in the factory, the laboratory, the hospital, and beyond earth out into space. The
techniques of measurement in these different settings are all similar. What you learn here will generalize to
many fields outside of earth measurements. But let's recognize that the health of our planet depends a lot on
understanding that can come from measurements. There are a lot of interesting careers that can combine
knowledge of electronics with a love for the earth environment. Scientist, engineer, modern farmer. Why not
put computers to work for the good of our planet?

Audience and Teacher's Guide

The Earth Measurements curriculum was created for ages 17+ as a subsequent text to the “What's a
Microcontroller?” guide. Like all Stamps in Class curriculum, this teaches new techniques and circuits with only
minimal overlap between the other texts. New topics introduced in this series are a closed-loop feedback
control system, serial communication, use of the BASIC Stamp's EEPROM, conductivity in water, and the use of
a sound transducer for human feedback.

Page 2 Earth Measurements Student Guide Version 1.0

Preface

The depth and availability of a Teacher's Guide varies between the Stamps in Class curriculum.
Because experts in their field independently author each set of experiments, and they are provided leeway in
terms of format. This series was written by Dr. Tracy Allen, who chose to include only the answers to the
Challenge section in a separate Teacher's Guide. In comparison, the “What's a Microcontroller?" Teacher's
Guide included answers to fill-ins and basic questions. The Earth Measurement Teacher's Guide will be
available by e-mail request to stampsinclass@parallaxinc.com.

Copyright and Reproduction

Stamps in Class lessons are copyright & Parallax 1999. Parallax grants every person conditional
rights to download, duplicate, and distribute this text without our permission. The condition is that this text
or any portion thereof, should not be duplicated for commercial use resulting in expenses to the user beyond
the marginal cost of printing. That is, nobody would profit from duplication of this text. Preferably, duplication
would have no expense to the student. Any educational institution wishing to produce duplicates for their
students may do so without our permission. This text is also available in printed format from Parallax.
Because we print the text in volume, the consumer price is often less than typical xerographic duplication
charges. This text may be translated to any foreign language with the permission of Parallax, Inc.

Special Contributors

Tracy Allen Ph.D. with Electronically Monitored Ecosystems, located in Berkeley, California wrote this
curriculum (http://www.emesystems.com). EME Systems designs and manufactures instruments for
environmental science. Some of their products are off-the-shelf, and others are customized systems for
individual clients. For example, the commercially available OWL2C uses a BASIC Stamp Il or IISX
microcontroller, providing reprogramming capabilities for a customer who doesn't use the default program.
Dr. Allen has particular interest in programs that deal integrated pest management on the farm, efficient use
of natural resources, and understanding of endangered species or ecosystems. Dr. Allen is a frequent
contributor to the Parallax BASIC Stamp and Stamps in Class list servers. Parallax is very appreciative of his
involvement with the Stamps in Class program.

Special thanks also to the Parallax team who provided ideas and content for the program. The
Parallax staff who designs, manufacturers, and accepts orders and packages the Stamps in Class products is a
key part of the Stamps in Class program.

Earth Measurements Student Guide Version 1.0 » Page 3

Preface

Page 4 Earth Measurements Student Guide Version 1.0

Experiment #1: Piezo and Temperature Transducer

Temperature is the number one variable in Earth
Experiment #1: Piezo Measurements. We need only a transducer to measure the
and Temperature temperature, anql another transducer to convey the
temperature readings to our eyes and ears.
Transducer

In this first lesson, you will start off by experimenting with a
transducer that converts electrical impulses from the BASIC Stamp into musical tones. This audio enunciator
will provide useful feedback about the operation of the BASIC Stamp throughout this series of lessons. The
main project in this lesson will be to install a digital temperature sensor on your Board of Education. This too
is a transducer that converts temperature into a coded form that the BASIC Stamp can understand. The
BASIC Stamp will take temperature readings and display them on the computer screen. In this series of
lessons, we are going to measure temperature in two quite different ways, to help understand how the
versatile BASIC Stamp is used to approach the task.

Temperature is of the first importance in Earth Measurements. You are probably sitting in a comfortable
room, in the range of 17 to 30 degrees Celsius (63 to 86 degrees Fahrenheit). There may be a thermostat in
the room that holds the temperature at that comfortable value, using a heater or an air conditioner. (or
maybe not!?) What do you think the temperature is right now where you are? How about outside? If you
don't have a thermometer, don't worry, you will have one before this lesson is over. We all know from
personal experience that temperature is important to our well being.

We live on a planet that is just the right distance from the sun and has the right kind of atmosphere to offer
temperatures conducive to life as we know it. Through our human technology and industry, from clothing and
housing all the way through to modern electronic environmental controls, we have extended the range of
temperatures where we can live.

It is not far-fetched to say that every process on earth depends on temperature in some way. Think of
erosion of mountains. Every year water seeps into the cracks, it freezes, expands, and breaks off pieces.
Snow, rain, clouds, wind. Nearly every aspect of the weather depends critically on temperature. A few tenths
of a degree change in the temperature of the water in the South Pacific Ocean (El Nifio) can affect the
weather all over the world. How apples grow on trees, how the worms grow in the apples, how mosquitoes
thrive in stagnant pools, how tadpoles survive to eat the mosquitoes, everything relating to agriculture and
biology is dependent on temperature. Add to that the environment in factories, hospitals, laboratories,
schools, homes, museums, and on and on. Suffice it to say that if you want to go into any career related to
the environment and microcontrollers, you are going to have to know how to measure temperature.

Earth Measurements Student Guide Version 1.0 » Page 5

Experiment #1: Piezo and Temperature Transducer

Parts
Required

1) piezo transducer
1) DS1620 Temperature Sensor

1) 1K Wresistor (brown black red)

1) 0.1 nF capacitor
several) jumper wires

P

Build It!

a5

Piezoelectric transducer:

Piezo comes from a Greek word that means “to squeeze or press”, and electric
comes from a Greek word that refers to amber, a mineral that can accumulate a
charge of static electricity when rubbed. Crystals, such as quartz and also some
ceramic and plastic materials generate electricity when they are flexed back and
forth. This is the piezoelectric effect. Electrical wires attached to the surface of
the material can pick up that electricity. This is the basis of some kinds of
microphones. A microphone is a transducer (Latin for "lead across") that
transforms sound into electricity. The piezoelectric effect works in reverse too.
If electricity is applied across some piezoelectric materials, they bend in
response. They can be fabricated as a thin disk, with electrical connections on
both faces, and wires attached. The disk is like a tiny drumhead. When
connected to an rapidly alternating electrical voltage, it flexes back and forth,
compresses the air and emits sound waves, and becomes a piezo transducer. It
turns electricity into sound. The electrical voltage has to be in the right
frequency range to resonate with the natural tone of the tiny drumhead.
Sometimes a piezo transducer is packaged along with some electrical circuitry,
so that all you have to do is connect it to a battery or to a power supply and it
buzzes at one preset pitch. Such a device is called a piezo buzzer. The device
we are using here is a simple piezo transducer. It will not buzz if we connect it
directly to a battery. It will only produce sound when we provide audio
frequency electrical impulses from the BASIC Stamp.

Page 6 * Earth Measurements Student Guide Version 1.0

In this experiment you will need the following parts in addition to a
BASIC Stamp Il and Board of Education:

It's always good to start out with a simple project, just to get into the
swing of things. That is going to be the pattern in this series of lessons.
You will start out with a warm-up project, and then move on to the main
focus of the experiment. The warm-up to start this lesson is simply a
buzzer, a sound output device. In fancy terms, it is an "enunciator”, or a
"piezoelectric transducer”. It will be a big part of our user interface in

the projects to come in this set of
lessons on Earth Measurements.
Sure, we can also see results on the
computer screen when the Board of
Education is hooked up to it via its
umbilical cord. Having the enunciator
will allow us to stand up and walk
away from the computer, around the
room, into the dark, outside into the
sunlight, and still be able to "hear"
what is going on.

The piezoelectric transducer you will
find in your parts kit is a black plastic
cylinder with two pins sticking out
the bottom and a sound hole in the
top. The top of the case above one
of the pins is labeled with a + sign.
Hook it up to your board of
education as shown in the pictorial in
Figure 1.1. The schematic is shown in

-

e
L

e
e

.
.

i
L
-

i

-
-

i

piezo
transducer

Vss

S -

- xtw .

-

™

*
o

% S
(RN
|

i

d Temperature Transducer

™.

o T = Meaa
=

RS R B e

e e e e

o

1€Z0 an

P

Experiment #1

Transducer Pictorial

120

Pei
Piezo on an angle as shown

Figure 1.1

Pin under + mark wired to PO

Other pin wired to Vss

Please note. The six lessons in this Earth Measurements series will
progress from unit to unit by adding new circuits onto the old ones

already built on the Board of Education (BoE). To avoid having to
rewire things later, please follow the suggested parts placement.

PO =

IC

Transducer Schemat

Electrical schematic of pictorial shown in Figure 1.1

Peizo

Figure 1.2

Earth Measurements Student Guide Version 1.0 « Page 7

Experiment #1: Piezo and Temperature Transducer

Temperature Transducer

Program it!

This experiment consists of three smaller sections: piezo transducer,
Morse code, and temperature measurement. The project is progressive.

Now, to make noise with the piezo transducer, the BASIC Stamp has to supply a high frequency signal from PO.
The PBASIC command to do this is f r eqout . That's short for "frequency output”. Start the Stamp2.exe
editor on the PC and type in the following PBASIC program:

freqout 0, 1000, 1900

That's it. A one-line program.

In case of difficulty

during download:

If ALT-R gives you a message
about "hardware not found"
or "communication error”,
then check to be sure that the
cable that connects the PC to
the Board of Education is
okay. Also check to be sure
that the BoE has a good
power supply and that the
power supply indicator light
on the BoE is glowing.

If you see a message
indicating an error in your
program, then check your
typing. If the program is okay
and ALT-R is accepted without
an error message, but it
sim;ply won't work, then
check the wiring on your
Board of Education. Compare
it to the wiring shown on the
pictorial.

Now be sure the Board of Education is connected by its cable to the PC. While
holding the "ALT" key down, press the letter "R", for "run". This should be
familiar if you went through the "What's a Microcontroller?” experiments. If all
is well, you should hear a high pitch beep. Each time you press the reset button
on the BOE, you will hear it again. The reset button is found on the Board of
Education near one corner, and is clearly labeled Reset. You can press it as
often as you want, no worries. Pressing the button starts your program over
again but will not erase it.

There are three parameters in the f r eqout command:

freqout 0, 1000, 1900

AAAA==————— selects an output frequency of 1900 hertz
L makes the tone last 1 second=1000 milliseconds
Mo uses PO signal line from the BASIC Stamp for the tone

If we could observe the voltage on PO during the f r eqout command, we
would find that it goes back and forth from 0 to 5 volts very rapidly, and what
comes out is fundamentally a 1900 hertz sine wave that lasts for 1 second. If
you have a handheld multimeter then try to measure the frequency. For more
information about how it works, see the explanation of the f r eqout and PV
commands in the Basic Stamp Manual Version 1.9.

Page 8 * Earth Measurements Student Guide Version 1.0

Experiment #1: Piezo and Temperature Transducer

Parameter:

A parameter is a number that
governs the behavior of a
command or a process. In the
freqout command, the
parameters of the command
specify what pin to use, how long
the sound will be, and what the
frequency will be. The word
parameter is one you will often
hear in the fields of science and
engineering. For example: air
temperature is a parameter that
determines how fast paint will
dry. Or, the global average
temperature of the earth's
atmosphere is one parameter that
determines how much water is in
the ocean versus locked in the ice
caps, and how much coastline is
exposed or submerged.

freqout 0, 2000, 1900, 1903

Now it's time to experiment. Modify the program by replacing the 1900
with 3800 to give it a higher pitch:

freqout 0, 1000, 3800

Run it using ALT-R. Pay attention that what you hear is a higher pitch. Try
it a couple of times, one way and then the other. Don't be afraid you are
going to wear out the BASIC Stamp by reprogramming it lots of times. You
can reprogram the BASIC Stamp at least a million times.

freqout 0, 2000, 3800

And this, to make the f r eqout command play two tones at once:
freqout 0,2000, 1900, 2533

The number 2533 is equal to 1900 times 4/3, the musical interval "fourth".
The BASIC Stamp can play two tones at once, but that's it, no three part

harmony.

And try the following:

How do you explain what you hear?

And try a very short duration, to make a click 2ms long:

freqout 0, 2, 1900, 3804

Feel free to experiment. By experimenting with individual BASIC Stamp commands, you can become aware of
possibilities that may be of use in programs later on.

Earth Measurements Student Guide Version 1.0 « Page 9

Experiment #1: Piezo and Temperature Transducer

Morse Code

An "audio annunciator” is a device that gives sound feedback about what is going on in a system. Having an
audio annunciator on the Board of Education is going to be very useful throughout these experiments on
Earth Measurements. In Experiment #2, we will program it to send numbers using Morse code, and use the
code to annunciate the temperature readings. Morse code is a fine way to send messages using sound. Here
are the Morse code numerals from 0 to 9 (Appendix C has a complete Morse code table):

Numeral Morse code Binary
0 dah dah dah dah dah 11111
1 dit dah dah dah dah 01111
2 dit dit dah dah dah 00111
3 dit dit dit dah dah 00011
4 dit dit dit dit dah 00001
5 dit dit dit dit dit 00000
6 dah dit dit dit dit 10000
7 dah dah dit dit dit 11000
8 dah dah dah dit dit 11100
9 dah dah dah dah dit 11110

The Morse code is based on sending patterns of short and long sounds. The long sound is always three times
as long as the short sound. The short sound is called "dit" and the long sound is called "dah". The numerals
are all made up of five dits and dahs. The letters of the alphabet have from one to four sounds, and the most
common letters have the shortest patterns (for example, e=dit, t=dah, s= dit dit dit, q=dah dah dit dah).
Punctuation has six sounds, e.g. period=dit dit dah dah dit dit. Within one letter or numeral, the time between
sounds is supposed to be the same length as the dit. And the time between different digits in a sequence like
"50" is supposed to be the same length as a dah. The "binary" column is there just to show how you might
think of Morse code as a binary number.

In these lessons, we will use only the numerals. Try this simple program that sends the two-digit number "50"
as Morse code. You do not have to type in the remarks. Recall that remarks are the apostrophe “ ' * and
everything that follows it on the line.

dit con 70 ' a short span of tine in mlliseconds
dah con 3*dit ' a longer tine, 3 tinmes the above
i var ni b ' index
for i=1 to 5 ' send 5 sounds
freqout 0,dit, 1900 ' send a dit
pause dit ' short silence
next
pause dah ' a longer silence between digits

Page 10 * Earth Measurements Student Guide Version 1.0

Experiment #1: Piezo and Temperature Transducer

for i=1 to 5 ' send 5 sounds
freqout 0, dah, 1900 ' send a dah
pause dit ' short silence
next

Run the program. Press the reset button on the Board of Education if you want to hear the number 50 again.
How could you modify your program to send the most famous Morse code message of all, SOS?

You should already be familiar with the for. . . next loop from the "What's a Microcontroller?” text.
Think about how the program incorporates the rules of the Morse code. Note how it starts off by defining a
constant dit in milliseconds, and then dah is defined as three times dit. PBASIC allows you to do that, to
define one constant mathematically in terms of another. That's convenient, because it allows you to change
the overall speed by changing only the "dit" constant, and "dah” will fall into place.

In your program, change the dit constant from 70 to some other value, twice or half as long, and listen to the
effect on the overall speed. The important thing is that the ratio between the dit and the dah is always going
to be 1:3.

This is only an introduction. We will write a serious Morse program in lesson two, to annunciate temperature
readings.

Temperature Readings from the DS1620

Now for a complete change of pace. Let's move on to the main topic, to acquire some temperature readings.
In engineering, we usually use the word acquire, instead of get when we refer to data or readings. The Board
of Education is going to become our data acquisition system.

The DS1620 is a modern temperature transducer (portions of the DS1620 data sheet are included in Appendix
B). There is that word, transducer again. Here, it refers to a device that transforms temperature into an
electrical signal. The DS1620 takes temperature as its input, and transduces that value into a digital code that
the BASIC Stamp can understand. The digital code represents the temperature of the DS1620 chip.

The DS1620 comes in an 8-pin plastic package. Plug it into the BoE and hook it up as shown in the pictorial in
Figure 1.3. A word to the wise--When you change the wiring on the BoE, it is a good idea to disconnect the
battery or power supply. It is all too easy to touch a wire in the wrong place and risk burning something out.
Double check your wiring, or better yet, have someone else double check it, before you reconnect the power.
The schematic for the DS1620 is shown in Figure 1.4.

Earth Measurements Student Guide Version 1.0 Page 11

Experiment #1: Piezo and Temperature Transducer

Figure 1.3: DS1620 Pictorial

Plug the DS1620 in at the very end of the BOE. Observe that there is a
notch at one end of the DS1620 package to indicate the polarity. Be

careful not to reverse the power supply.
0.1 uF capacitor from Vdd to Vss
DS1620 pin 4 wired to Vss.
DS1620 pin 8 wired to Vdd

DS1620 pin 1 wired through 1K ohm resistor to BASIC Stamp P15

DS1620 pin 2 wired to BASIC Stamp P14
DS1620 pin 2 wired to BASIC Stamp P13

Figure 1.4: DS1620 Schematic

Schematic of the circuit pictured above. Remember - the
piezo transducer portion of the circuit has already been
built.

Page 12 « Earth Measurements Student Guide Version 1.0

+5VDC

K DS 1620
P15 NN DQ VDD
P14 = T+
Vss

CLK T(hi) 0.1 uF

P13 e RST T(lo)

JjGND T(com)

Vss

piezo
transducer

PO =

1

Vss

Experiment #1: Piezo and Temperature Transducer

Plug the DS1620 in at the very end of the Board of Education. Observe that there is an indicator at one end
of the DS1620 package, to indicate the polarity. Be careful not to reverse the power supply connections!

Now it's time to program the DS1620. Literally. The DS1620 is itself a little computer. More accurately, it's a
smart sensor. It can remember certain settings and do some pretty nifty tricks all on its own. Smart sensors

are being used more and more in electronics and in the field of environmental monitoring and control.

Enter the following program. Again, you don't have to enter the remarks after and including the '.

| ow 13 ' Puts the DS1620 in the waiting state
freqout 0, 1000, 3800 ' sound shows us the programis running

hi gh 13 ' Tells the DS1620 that a conmand is coning
shiftout 15,14,1sbfirst,[12, 2] ' Command to set DS1620 configuration 2.

| ow 13 ' Conpl etes the command cycl e.

end " end of program

Double check your typing. Run (ALT-R) the program.

[Ir- . _ '
W/hat S @Wl You will hear the one-second tone. That's all. But a lot has happened.

Indicator: The shi ft out command sends two bytes 12 and 2 to .the D$1620. The 12
The DS1620 is an 8-pin DIP is a command to the DS1620 to get ready for the configuration, and the 2
package. The indicator denoting is the actual configuration. Here are the four possible configurations:
the DS1620's pin 1 is a small circle

in the upper left-hand corner. On 0: No CPU, continuous conversion

parts like the DS1620 and BASIC 1: No CPU. one-shot conversion

Stamp, the pins are always ' . .

counted counterclockwise starting 2: Yes CPU, continuous convel_"smn

from the mark. The mark can be a 3: Yes CPU, one-shot conversion

bump, round depression, notch,

beveled edge, spot of paint, etc. What? By selecting configuration 2, we are telling the DS1620 that we
Pin 1 Indicator want it to send its readings to a CPU (Central Processing Unit--the BASIC

Stamp). The alternative is for it to sit there and monitor temperature on
its own, and not send back any readings. What good would that be? We
asserted that the DS1620 is a smart sensor. Those other pins we are not
using on the DS1620 could be wired up to a fan or heater, and set to
regulate the temperature in a room or in a terrarium. The DS1620 also
has a command that allows you to set a desired temperature. You will
hear more about regulation of temperature in Experiment #6. But that is
O] the way we are using it here, and we have not connected anything to
those pins. By setting the CPU option, the DS1620 will send data back on
the serial line when it receives commands. The term “continuous conversion” means that it will read

O

DS 1620

[I
HEEE N

Earth Measurements Student Guide Version 1.0 » Page 13

Experiment #1: Piezo and Temperature Transducer

temperature over and over and always have a current value available. The term "one-shot” (which we are not
using) means that it will read the temperature once and then stop until it receives a new command. The one-
shot mode is used when an engineer needs to get the best battery life.

Now that we have sent the configuration, the DS1620 will not forget the setting. It is stored in memory inside
the DS1620 in a kind of memory (EEPROM, like the BASIC Stamp program memory) that is not lost when the
power supply is turned off.

The heart of the above PBASIC program is the shiftout command. The sequence is an example of
synchronous serial communication. It will pay for you to understand how it works. Lots of modern electronics,
found in everything from pagers to satellites use these ideas. One main reason for this popularity is that
devices that use serial communication can be made very small, and there don't have to be many wires
connecting them. Here are the parameters of the command.

hi gh 13 <---this is really part of it, the chip select.
shiftout 15, 14,1sbfirst,[12, 2]
AAAA————— two bytes sent from the Stamp to the DS1620
L the bytes are sent least significant bit first
L e L P P14 on the BASIC Stamp is the clock
A e P15 on the BASIC Stamp is used to send the data bytes
low 13 <---this is part of it too, ends the session.

To explain how it works, I'll try an analogy using a stick figure dance. Please refer to Figure 1.5. The BASIC
Stamp is the one with the round head. The DS1620 is the blockhead. The DS1620 starts off with a zero as its
configuration in memory.

The BASIC Stamp starts the SHIFTOUT dance by raising the left hand. That is a wake-up call to the DS1620, and
it means get ready, this message is for you. Then the BASIC Stamp taps out the first 8 beats with its foot. On
each tap, the BASIC Stamp holds his right hand either low to signal a zero, or high to signal a one. Those are
the digits of a binary number, sent out, least significant bit (Isb) first.

The DS1620 watches BASIC Stamp's right hand at each tap. After eight taps, DS1620 has the binary number
12 and recognizes it as a command. The BASIC Stamp knows in advance that DS1620 will interpret 12 as a
command. (The command set is determined by the engineers at Dallas Semiconductor, the manufacturer of
this part).

Page 14 » Earth Measurements Student Guide Version 1.0

Experiment #1: Piezo and Temperature Transducer

Sm(%m Stamp signals DS1620 to pay attention

. readyl-—)
.
o LoD 1100 \%
Z Q D81620 listens

2

=2

2
2

Stamp sends comumand 12, then data 2

* left hand sigmals "ready”

'ngh.lgmid mgur._:ls bits : i Done with for
oot taps time 2 L msb DS1620 left with configumtion "2" in memory
#4k3 signal lines™ b 0
.. Isb

tap

end of command, 12 0 1

taf™ ;

" 0
tafr™ i

=

Figure 1.5: SHIFTOUT Dance
The BASIC Stamp is the one with the round head facing tap™
away from you. The DS1620 is the "blockhead". The DS162-

starts off with a zero as its configuration in memory.

1
end of data, 2

Stamp moves on to other tasks

It isn't over yet. The DS1620 is now waiting for another binary number to follow the 12. The stamp taps out 8
more beats, and DS1620 watches BASIC Stamp's right hand at each tap. This time it gets the number 2. The
DS1620 stores the 2 in its EEPROM memory. Now the DS1620 is configured. The BASIC Stamp puts down its
left hand to signal that the sequence is finished. The BASIC Stamp and the DS1620 are no longer in
communication. All that signaling is taken care of automatically, in less than 1/1000 second, by the SHIFTOUT
command. Figure 1.6 shows the same thing as an engineer would draw it.

Figure 1.6: Timing Diagram

Engineer's timing diagram of the SHIFTOUT command as executed from the BASIC Stamp.

time: ----emmmm e one millisecond--------------------- >

P13: 000055000 CS

P14: 0000005005005005005005005005000000500500500500500500500500000 Cl ock

P15: 0000000000055555500000000000000000005550000000000000000000000 Dat a
0 01 1210 0 0O 01 0 0 0O 0O 0O
A-command 12----------- > A-data 2--------------- >

Earth Measurements Student Guide Version 1.0 » Page 15

Experiment #1: Piezo and Temperature Transducer

Note that 12 decimal = 00001100 binary, and 2 decimal is 00000010 binary.

When reviewing the timing diagram from Figure 1.6 consider the following:

P13 starts the exchange by going from 0 to 5 volts. The command ends when P13 goes back down from 5
to 0 volts. P13 is often called the chip select or chip enable.

P14 is the clock and puts out a series of 16 pulses, 0 to 5 volts, in two groups of 8.

P15 is the data line and puts out either 0 or 5 volts in each time slot, synchronized with the clock pulses
on P14. The first group forms the 12 (00001100 in binary), and the second group forms the 2 (00000010)

in binary.

Note the "Isbfirst" parameter for the shi ft out command. The least significant bit comes first in the

time sequence.

This whole transmission of 16 clock cycles takes about 1 millisecond, 1/1000 of a second, and it happens
automatically under the shi f t out command.

If you want more explanation, please refer to the BASIC Stamp Manual Version 1.9 where it describes the

shi ftout

command, where there is also an application note. This is called synchronous serial

communication, because the data is synchronized with the clock ticks that come from the BASIC Stamp. The
BASIC Stamp is commonly referred to as the master and the DS1620 as the slave. That is because the clock
pulses and commands originate in the BASIC Stamp.

Now for the main event, to read the temperature from the DS1620. Enter the following program.

X var byte
degC var byte

out s=%9000000000000000
'fedcbha9876543210
dirs=94111111111111111

freqout 0, 20, 3800
hi gh 13
shiftout 15, 14,1 sbfirst,[238]
low 13
| oop:
hi gh 13
shiftout 15, 14,1sbfirst,[170]
shiftin 15, 14,1 sbpre, [x]
low 13
degC=x/ 2

define a general purpose vari abl

e, byte

define a variable to hold degrees Celsius

not e:

define the initial state of all

as | ow outputs

beep to signal that it is runnin
sel ect the DS1620

send the "start convertions"
do the command

going to display once per second
sel ect the DS1620

send the "get data" command

get the data

end the comand

convert the data to degrees C

Page 16 * Earth Measurements Student Guide Version 1.0

DS1620 has been preprogranmed for

pi ns

g

command

node 2.

Experiment #1: Piezo and Temperature Transducer

show the result on the PC screen
1 second pause
' read & display tenperature again

debug ? degC '
pause 1000 '
goto | oop

Run the program using ALT-R.

The debug screen should appear, and you should see the current temperature readings appear once per
second. The readings are in units of degrees Celsius. If you hold your finger on top of the DS1620 chip, you
should see the temperature rise.

In case of difficulty from an

error in your program:

If you get a message about an error in
your program, you may have typed
something wrong. The Stamp editor
program will position the cursor near
where the error occurred. Do not take
the wording of the error message
literally. Sometimes the wording of
the error message is not appropriate.
Look for any error near the cursor. If
the error message you see is about
"hardware not found" or
"communication error”, then be sure
your Board of Education is powered on
(green light on the BoE?!) and that
cable to the PC is connected properly.
If all that goes okay, but the program
does not work, then you will have to
decide whether the problem is in the
program or in your wiring of the
DS1620.

out s=%9000000000000000
'fedcba9876543210
dirs=94111111111111111

Now, what is the room temperature where you are working?

Observe that when you hold your finger on the chip or when you put it
under a lamp or in the sun, it takes some time for it to heat up and for
it to cool down. Once you heat it up, observe that you can cool it down
faster by fanning air across it. What is the temperature near the floor?
On top of your PC? Next to your body? Is it different from the
temperature up high? Try to experiment.

Which one of these temperatures (if they are different) will be the one
you call the room temperature? Usually, HVAC engineers (Heating and
Air Conditioning) prefer to use a temperature reading that is taken in
the shade at a position not too close to sources of heat, like computers
and bodies. This is called a representative temperature. In the real
world, there can be lots of variation over even small distances and
short times. You always have to make some choice about where and
when is the best place and time to make a measurement.

What is going on in the program? First a word about the outs and dirs
statements:

define the initial state of all pins

as | ow outputs

Earth Measurements Student Guide Version 1.0 Page 17

Experiment #1: Piezo and Temperature Transducer

When using the BASIC Stamp, or any microcontroller, there will be pins connected to the outside world, and
those pins can be either an input or an output, and if it is an output, it can be either output high, or output
low. You are already familiar with the out and di r variables from the "What is a Microcontroller?” series.
Here, with an "s" on the end, the statements control all 16 1/0 pins, numbered from 0 to f (Note the
apostrophe in front of the "f"--above that makes it a remark - and it is just there for reference.) The BASIC
Stamp 1/0 pins are numbered from PO to P15, where a=10,...f=15.

It is good programming practice to start off every serious program by putting all of the microcontroller pins
into a known, desirable state. When the BASIC Stamp is first turned on or reset, all of the pins are configured
by default as inputs. This is a fine state for a microcontroller to start up in. You, the designer, are in charge of
making the pins outputs as needed. On the other hand, if a pin is not connected to anything, it is not a good
idea to leave it as input. Unconnected inputs may cause the microcontroller to behave erratically or to draw
excessive power from the battery. The above instructions turn all of the pins on the BASIC Stamp into LOW
outputs. That is what we want at first for the piezo transducer and for the DS1620. All the other pins are
made low outputs just as a matter of principle. Reasons to do otherwise will arise we progress through these
lessons. For more information on the dirs and outs command, please refer to the BASIC Stamp Manual
Version 1.9, page 216.

The main action in the temperature program comes from the SHIFTOUT and SHIFTIN commands.

The first SHIFTOUT should look familiar. You see the familiar sequence: It sets P13 high, and then sends one
byte, 238, out to the DS1620, and then sets P13 low again to end the sequence. Inside the DS1620, the 238 is
a command that tells it to start converting temperature into digital codes. The 238 command needs to be
sent at least once after the DS1620 is powered on. Unlike the configuration command, this one is not stored
in the permanent memory of the chip.

Next comes the heart of the routine, to read the temperature from the DS1620. Again you see the familiar
sequence: It sets P13 high, and then sends one byte, 170, out to the DS1620. So far so good. The DS1620
interprets the 170 as a command for it to get the current temperature reading and send it back to the BASIC
Stamp. Now things get interesting. The DS1620, in response to the 170 command, takes control of the data
line. The BASIC Stamp moves on to the shi fti n command. Here are the parameters:

shiftin 15, 14,1 sbpre, [x]
Ammmmmmmm name of the variable to receive the variable
e the bytes are received least significant bit first
B e L e P14 on the BASIC Stamp is the clock
A mmmmm e P15 on the BASIC Stamp is used to receive the data bytes
low 13 <-- end the command

Page 18 » Earth Measurements Student Guide Version 1.0

Experiment #1: Piezo and Temperature Transducer

readyl
S D51620 listens to command
|

sk
g1
P then DS1620 responds with temperature reading

a” 1 Stamp sends cornmand 170
i
tag™
1

left hand signs "ready”
right hand signs bits
foot taps time

I
. Isb
P
end of command, 170
ta ! F
s
left hand signs "ready” ’
foot taps time
stamp listens to DS1620 \%

Figure 1.7: SHIFTIN Dance

The BASIC Stamp is the one with the round head. The
DS1620 is the "blockhead". The DS162- starts off with a end of ‘empem‘“r‘"
zero as its configuration in memory.
Stamp hag the temperatire leadmg

P15 on the BASIC Stamp is now an input, whereas for shi ft out it was an output. The BASIC Stamp is now
ready to receive data from the DS1620. For your edification, this is diagrammed in Figure 1.7, and as an

engineering timing diagram in Figure 1.8.

Observe that the BASIC Stamp is still in charge of the timing. The BASIC Stamp is still the master and the
DS1620 is the slave. Here is the timing diagram:

Earth Measurements Student Guide Version 1.0 » Page 19

Experiment #1: Piezo and Temperature Transducer

Figure 1.8: Timing Diagram
Engineer's picture of how the SHIFTIN command works.

time: ------mmiie e one mllisecond--------------------- >

P13: 000055000 CS
P14: 0000005005005005005005005005000000500500500500500500500500000 Cl ock
P15 0000000055500055500055500055500000005550000005555550000000000 Dat a

01 0 1 0 1 0 1 01 0 01 1 0 O
A-command 170---------- > A-data 50-------------- >
BASI C Stanp to DS1620 DS1620 to BASIC Stanp

Each time the BASIC Stamp sends out a pulse on the clock line P14 (taps its foot) , the DS1620 signals the next
bit of the temperature byte. It starts with the least significant bit first. The | sbpre means that the BASIC
Stamp looks for the least significant bit before it sends out the first clock pulse. It goes like this, get 1st bit,
pulse clock, get second bit, pulse clock, and so on until it has all 8 bits. The BASIC Stamp stores the data it
receives from the DS1620 in the variable, x.

If the temperature is 25 degrees Celsius, the DS1620 sends back the value 50, which is two times the
temperature. In binary, 50 is 00110010. The bytes that the DS1620 sends out are always two times the
temperature. If the temperature is 25.5 degrees C, then the byte that the DS1620 sends back will be 51. Each
step in x represents 0.5 degrees C. That is the resolution, the smallest change in temperature that the sensor
detects.

Our program then converts the raw value of x to temperature:

degC=x/2 ' convert the data to degrees C
The BASIC Stamp uses integer arithmetic. It throws away the 0.5 degree remainder. Both 50/2 and 51/2
come out as degC=25, and 52 and 53 both come out as degC=26, and so on. There are ways to keep the half
degree resolution, but we won't pursue that here. (But you can do so as a challenge!)

The temperature is sent to the debug screen by this command:

debug ? degC ' show the result

The "?" makes the BASIC Stamp send "degC="and then the actual value of degC to the debug display screen,
with each entry on a new line.

Page 20 « Earth Measurements Student Guide Version 1.0

Experiment #1: Piezo and Temperature Transducer

W e

Operational limit:

The DS1620 is perfectly capable of
measuring temperatures below zero,
down to -25. That would be
important if you were out doing
research on snow in Alaska, or if you
were designing a control system for a
freezer. The trouble is, the program
we just wrote does not handle
negative temperatures correctly. l.e.,
when the temperature goes to -1
degrees C, our reading would be
degC=127 instead of degC=-1. In
order to read negative temperatures,
we would have to take a couple more
steps, that would complicate the
program more than we want to get
into at this time. As it stands, zero
degrees is the operational limit on
the low end. Operational limits are
everywhere in engineering, and they
come up for all kinds of reasons, both
in the software and hardware and in
the properties of materials. This
particular operational limit comes
from a short cut we have taken in
writing the software. That will be
justified so long as the temperature is
above freezing, but becomes a "bug"
if we try to go below freezing. A
famous software operational limit is
(was!) the Y2K bug, where a software
shortcut taken in the latter half of
the 20th century led to an
operational failure or glitches in the
year 2000.

Now for a valuable lesson, you should save the program you have just
typed in and debugged. In this series of lessons, we are going to build up
a large program, one piece at a time. This is the first piece you will be
able to reuse.

If you didn't do so already, you may want to enter the remarks attached
to the program. That will reinforce your understanding, and it will also
make it easier for you to pick up the program the next time you look at
it, in Experiment #2.

Decide what you want to name the program. Your instructor will have
directions, depending on how your class is set up to share the PCs. The
program will have an extension of "BS2". Let's say you decide to name
the program "DS1620.BS2"

This is how you save the program in the DOS and Windows versions of
the Parallax BASIC Stamp editor:

STAMP2.EXE (DOS):

Type ALT-S, holding down the ALT key while tapping "S". A dialog box will
appear for you to enter the program name. Type in the name, and press
ENTER. That's it.

STAMP2W.EXE (Windows):

Go to File/Save, then navigate to the directory where you want to save
the program, type in the name, and press enter or click Save.

Earth Measurements Student Guide Version 1.0 Page 21

Experiment #1: Piezo and Temperature Transducer

Challenge!

1. Write a program using a sequence of f r eqout commands to plays a simple tune. Look up the f r eqout
command in the BASIC Stamp Manual Version 1.9. You will find an example of how to play Mary Had a
Little Lamb. Okay, you can try Stairway to Heaven, or Beetoven's 5th, if you prefer. You will discover
some of the high fidelity limitations of the piezo transducer.

2. Define a variable degF for Fahrenheit. Display both degrees Celsius and degrees Fahrenheit on the debug
screen. Use either formula:

degF = degC * 9/ 5 + 32 or degF = degC * 9/ 10 + 32

Is one formula better than the other? Why? Observe how the readings change as you gradually change
the temperature of the DS1620 chip.

3. Display degrees Celsius resolved to 0.5 degrees. Recall that the result that comes from the DS1620 is a
binary number where each bit represents 0.5 degrees. To get degrees, we divided by 2 and lost a bit of
information (literally, a bit). You can display the result as 205 to represent 20.5 degrees C. Hint: multiply
by 5 instead of divide by 2.

4. If the temperature is greater than (you choose a value), play an alarm tone on the piezo transducer. Make
the alarm stop when the temperature goes back down. Then modify it so that the alarm continues, even
when the temperature goes back down. Under what circumstances would each kind of alarm be
appropriate?

Page 22 « Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging

. The theme of the Data Logging experiment is best answered by the
Experiment #2: question: What is data logging and why it is important in earth
Data Logging measurements? The activities of this experiment are: (1) Design a

user interface by adding a pushbutton to your existing setup on the

- Board of Education, then implement single click, double click and

long click to do different things; (2) Learn the basics of r ead and wr i t e with the BASIC Stamp's EEPROM; and
(3) Implement a "talking (Morse code) thermometer”.

Constancy punctuated by change: that is one prevalent view of the natural world. In order to understand and
predict events, people often need to keep a record of variables that affect the action. In the field of earth
measurements, the data logger, or data acquisition system, or DAQ for short, is an essential tool. It is a
machine that automatically takes readings and stores them at regular intervals of time (or on some other
basis) into the memory of the machine for later retrieval.

Data is stored in a log file. The term comes from nautical history, where readings of position and depth
soundings on a ship were regularly noted in the Captain's log-book (stardate). In fact, some data was collected
by throwing a log (not the book!) off the bow of the boat and counting the time it takes to reach the stern of
the boat. Then they could calculate speed.

These days, much logging is done by computers with sensors attached. Computers are well suited to data
logging - they never get bored or tired, and they can work reliably and very rapidly if required. It can be
difficult, boring, or downright impossible for a real human being to exist in the place and time where data
needs to be collected. Data loggers are found out on buoys floating in the ocean, high on windy mountaintops,
on spacecraft, in collars on grizzly bears, in the stomachs of whales, out in orchards and vineyards, and in
innumerable industrial settings.

Another "buzz word" these days is SCADA, for Small Computer Aided Data Acquisition. That usually refers to
something fancier, a network of sensors and computers, but the general idea is the same. Data loggers may
even communicate to a central hub via TCP/IP connections to the internet, or via long-distance radio links.

In this lesson you will learn important details about the EEPROM memory in the BASIC Stamp Il. This is in
preparation for logging readings of temperature, light and water level in the lessons to come. Also, you will
improve on your DS1620 thermometer from the previous lesson, and make it talk (in Morse code). And as a
warm-up, you will work with one pushbutton and the piezo beeper, to make a user interface.

Earth Measurements Student Guide Version 1.0 » Page 23

Experiment #2: Data Logging

Everyone who has a computer understands what you mean by a mouse, and the actions of click, double-click,
and click-and-hold. These actions are central to the modern computer's user interface. Have you ever
wondered how a program implements those actions? How hard would it be to implement them on the BASIC
Stamp? Well, it is not too hard at all, and we are going to do it, to enable one button on the Board of
Education to perform multiple tasks. There is not going to be room for multiple pushbuttons. One button,
along with feedback from the piezo transducer, is going to have to do it all for our user interface when the
Board of Education is not docked to the PC.

One button, one buzzer.

The Earth Measurements experiments are progressive and build on
the previous projects. Therefore, you'll be adding parts to your
Board of Education. This experiment requires the following parts:

Parts Required

pushbutton
10K ohm resistor
jumper wires

Page 24 « Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging

In Lesson 2 of What's a Microcontroller, "Detecting the Outside World", you
learned how to use two buttons to make decisions, to control two light

Build It emitting diodes. In this experiment you will build on that project and on the
previous Earth Measurements lesson. You already have an audio enunciator
for output. Now, install a pushbutton for input, as shown in Figure 2.1. The
schematic is shown in Figure 2.2.

Figure 2.1: Pictorial

Install a pushbutton (PB) at the very end of the BOE, across from
the piezo transducer. Two of the pins will hang over the edge of
the plastic terminal block, so as to leave a couple of holes free for
wiring, as shown. Hold the

+5 VDC

Figure 2.2: Schematic 1K DS 1620
Install a pushbutton (PB) at the very end of the BOE, across P15 AA A DQ VDD
from the piezo transducer. Two of the pins will hang over N
the edge of the plastic terminal block, so as to leave a couple P14 #——Hm ——CLK T(hi) 0.1 uF
of holes free for wiring, as shown. Hold the loose end of the !
pushbutton in place with a piece of strong platic tape. Wire P13 #——————RST T(o)| =
it up as follows. GND T(com) \V/ss

Vss to pushbutton (moved from piezo -)

pushbutton wired to piezo (-) = .

Vdd (+5 volts) wired to row next to piezo Vss ¢ plego

10k ohm from Vdd row to pushbutton (+) - ransaucer

hbutt to P1.

pushbutton (+) to 10K
Note: If you straighten the pushbutton pins you won't need = push
to hang it over the edge of the breadboard. Vss button

Earth Measurements Student Guide Version 1.0 « Page 25

Experiment #2: Data Logging

The wiring has a pushbutton connected to a pull-up resistor, and the
junction between the resistor and the switch connected to P1 on the
BASIC Stamp. When the pushbutton is not pressed, the voltage at the

Program It BASIC Stamp pin is 5 volts (=Vdd) through the pull-up resistor. But when
the button is pressed, the voltage at the BASIC Stamp pin is low, zero
volts (=Vss). Try the following test program.

Earth Measurenents program 2.1
test pushbutton

| oop:
debug bin inl
goto | oop

Run it and observe the debug screen as you push and release the pushbutton. The program is going around
and around the loop, spewing out the level that it finds at the input. The variable isi n1. It is either high=1, or
low=0. The reading should go to zero immediately when you press the pushbutton, and it should go to one
when you release it. Yes? Go on to the next step. No? Is the problem in the program, the connection to the
BASIC Stamp, or in the wiring of your pushbutton? The troubleshooting is left to you.

Page 26 * Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging

What's all this DEBUG stuff?

In these lessons, you will be seeing the DEBUG
statement very often, to put data on the
computer screen. It's name comes from the
notion of debugging. You can put information
on the screen that helps you see what is going
on in your program. Moreover, you can ask the
DEBUG command to send any messages or data
you want to the screen using a command called
SEROUT. It does not have to have be especially
for debugging.

The debug command lets you display the data
on screen in quite a few different ways, using
modifiers and screen control commands. In
lesson 1, we used commands like this to display
temperature data:

debug ? degC
That is a combination command that does 3
things: it prints the variable name and an equals
sign; it prints the decimal value of the variable;
and it moves the cursor down to a new line. The
result looks something like this:

degC=25
The current little program has a different form
of the debug statement:

debug bin inl
This prints the binary value of the variable inl.
Yes, inl is a variable, the state of input pin P1,
either low or high, 0 or 1. This form of the
debug command prints only the "0" or the "1",
and not the name "inl", nor the "=", nor any
spaces between the 1s and Os, nor does it move
down to a new line (until it hits the full width of
the screen). The result looks something like
this:

11111111000000000001111111111111110000
000

0000001111111111111111111000000011111...
As we come to new forms, we will describe
them briefly, and refer you to the BASIC Stamp
manual, v1.9 pp 253-256.

Now let's make the button produce a continuous sound while it is
pressed down.

' Earth Measurenents program 2.2
' buzzer
click: ' loop here while button is up
if inl=1 then clik ' decide if it is up or down
freqout 0, 8, 2500 ' play the tone while it is
down
goto clik

Run this. When you press the button, you should hear a sound
that may remind you of a cricket chirping. What is going on? If
the button is up, nothing happens, because the if statement
sees a 1 on the input pin and simply sends the program back to
the top of the loop. If the button is down, the i f statement sees
a zero on the input pin. The program falls through and executes
the freqout statement. Then it loops back to the top. So long
as the button stays down, the loop with the f r eqout is executed
over and over.

Recall that the parameter 8 in the fregout command is the
duration of the tone in milliseconds. The tone is 2500 hertz, so
in 8 milliseconds, there are 20 cycles of the tone (0.008 seconds *
2500 cycles per second = 20 cycles). Then the tone stops briefly,
while the program goes back up to the top and tests the state of
the P1 pin again. The tone is not produced during that time,
because the BASIC Stamp can only execute one command at a
time (This is an important fact to remember!), If the pin is still
low, though, it soon is back to the f r eqout command.

Earth Measurements Student Guide Version 1.0 Page 27

Experiment #2: Data Logging

So the sound looks something like this: [[[[{{[I.[[I[IT-HTTTTTETHTTLHTTT]. What you hear is not the pure
2500 hertz tone, but a tone with repeated brief interruptions. These add the low sub-tone you hear in the
sound, at about 110 hertz (about 9 milliseconds for the loop, 1/.009=111). This is indeed kind of like a cricket's
stridulation (song), which is produced when the insect rubs a file on one of its forewings against a ridge on the
other forewing, producing a high pitch, with brief pauses in the back and forth motion of the wings.

As a variation on the above program, try substituting the alternate values 1, 4, 50, 500 and 5000 for the
duration parameter. Run the program each time and listen, and explain to yourself why it sounds as it does.
At the long interval, 500 and especially 5000, note that the tone can go on long after the pushbutton is
released. Why is that? Why doesn't the tone stop immediately when you release the pushbutton?

With the duration set back to 8, tap on the button to send the number "50" or "SOS" in Morse code. Refer to
experiment 1 for the code listing. dit dit dit dit dit="5" and dah dah dah dah dah="0", dit dit dit="S", dah dah
dah="0". It is already a useful program - a Morse code keyer!

Try inserting a pause 6 command on the line after the freqout command. That gives a
[T eoosse T oneee LT H e T pattern that may seem even more cricket-like. Crickets, in addition to
their "output transducer”, the wings, also have an "input transducer”, an ear. It is a membrane located on
their front legs! Crickets are very sensitive to repeating patterns and pulses of sounds. It is their "Morse
code". Their songs are part of their courtship and male rivalry. Entomologists have studied insect
stridulations by reproducing sounds on speakers, and watching what parameters of the sound evoke what
behaviors from the crickets.

Sometimes you don't want an action to keep going all the time the button is down. You want it to happen
once and only once each time the button is pressed. Modify the program so that is reads as follows. (Here is
a new convention to make your life easier - modified lines will be remarked with a A, and new lines will be
remarked with a (3. Other lines stay as they are.)

Earth Measurenents program 2.3
single click on pushbutton, action on button down

clik: ' loop here while the button is up

if inl=1 then clik ' decide if the pushbutton is up(1) or down(0)
freqout 0, 100, 3800 ' A play the tone once on buttonDown
clikl: ' O loop here until buttonUp

if inl=0 then clikl ' O decide if pushbutton is down(0) or up(1)
goto clik

As in the previous program, nothing happens until the button is pressed down. Then the tone plays for 100
milliseconds. Then there is a second holding loop, where the program stays looping until the pushbutton is
released. When that occurs the program goes back up to the top, ready for the button to be pressed again.
One press, one action.

Page 28 * Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging

That is fine, but think about how a mouse click usually works. Most mouse clicks do not perform their action
until you release the mouse button. That's easy. Move the f r eqout down after the clikl loop:

Earth Measurenents program 2.4
single click on pushbutton, action on button up

clik: ' loop here while the button is up
if inl=1 then clik ' decide if it is up(l) or down(O0)
clikl: ' loop here until pushbutton goes back up
if inl=0 then clikl ' decide if it is down(0) or up(l)
freqout 0,50, 1900 ' A play tone once on "buttonUp"
freqout 0, 100, 3800 ' A and while we're at it, a better sound!
goto clik " wait for next keypress.

Now a rising note should occur when the button is released. Logical, right? Be sure you understand totally
how this works.

Now let's make the button take one action if you click it, and a different action if you hold it down for a long
time. This is similar to the action of some computer menus that only appear if you hold the mouse button
down for a longer period of time. Or you may have seen this in a car radio, where you press a preset button
briefly to select a station, but you hold the button down for a longer time (until you hear a beep), to program
a station you want into the preset memory. Appliances from wristwatches to VCRs, and yes, instruments sold
in catalogs that cater to earth scientists, all of them use tricks like this to get to the configuration menus. No
wonder it's hard to program a VCR!

The program needs a variable to keep track of the time you hold down the button. Try this: (New code is
shown with a)

Earth Measurenents program 2.5
pushbutton, action on click and hold

n var word O variable to keep track of time

clik: ' loop here while button is up
if inl=1 then clik ' decide if it is up(l) or down(O0)
n=0 ' O zero the tiner

clikl: ' loop here while button is down
n=n+1 ' O increment the tinmer
if n>500 then | ongclik ' O branch out after a certain tine
if inl=0 then clikl " or loop until buttonUp

freqout 0, 50, 1900 ' play tone once on buttonUp

freqout 0, 100, 3800 '

goto clik ' back to the top

I ongcl i k: ' O cone here if pushbutton is held down.

Earth Measurements Student Guide Version 1.0 Page 29

Experiment #2: Data Logging

freqout 0,5, 3800, 2533 ' O sound to show the tinme has passed
I ongcl i k1: ' O loop here while button is down

if inl=0 then longclikl ' O decide if it is up(1) or down(0)
goto clik ' O back to the top

The program arrives at cl i k1 when you press the button. While the button is down, the program goes
around and around the cl i k1 loop. The statement with the i n1=0 keeps the loop going repeatedly back to
cl i k1 so long as the pushbutton remains down. Each time around the loop, the timer variable n increases by
one. It is a race to see which happens first. Do you release the button first, or does the timer reach 500 first?
If the button is released first, well, that is just a single click, as above. The program plays the tone and goes
back up to the top to await another button action. But if the timer n reaches 500 before you release the
button, the program branches to the | ongcl i k routine. There it plays one short chirp, to let you know that
you've gotten there, and then waits for you to release the button. And then it goes back to the top.

Where does the magic number 500 come from? The simple answer is "trial and error". The programmer (you!)
tries different numbers until it feels right. Approximately how long (in milliseconds) do you have to hold the
button down before it branches to the | ongcl i k routine? Try experimenting - substitute different values in
place of 500.

Think about the order of these two statements in program 2.5:

if n>500 then |ongclik " O branch out after a long tine
if inl=0 then clikl " loop until the button goes back up

What would happen if the order of the two statements were switched? If you aren't sure, try it.

Page 30 * Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging

Advanced Topic: Detecting a double-click with the BASIC Stamp

Can the BASIC Stamp detect a double click? Sure, it's not too hard. At the end of a single click, the program
has to wait a fraction of a second to see if you are going to press the button again. If you do, then it is a
double click. If you don't, it is a single click. The interval of time is so short that you don't really notice it. The
actual interval is determined by trial and error, a "user preference".

This too needs a timer variable. We will recycle the same timer variable, n, from the last routine. Try this:
(lines remarked with a (J are the ones you need to add). Just for fun, we also modified the | ongcl i k routine
too, to so that it plays a constant chirp that continues until the button is released.

Earth Measurenents program 2.6
pushbutton, action on double click
n var word " variable to keep track of time

clik: ' loop here while the button is up
if inl=1 then clik ' decide if it is up(l) or down(0)
n=0 ' zero the tiner
clikl: ' loop here while the button is down
n=n+1 ' increment the tinmer
if n=500 then longclik ' branch out if it reaches 500
if inl=0 then clikl " or loop until the button goes back up(1)
n=0 ' O rezero the tiner
clik2: ' O loop here until tine runs out
n=n+1 " O increment the tiner
if inl=0 then doubleclik ' O branch out if the button goes down soon
if n<150 then clik2 ' O loop while tinmer is less than 150
freqout 0,50, 1900 ' here for single click-play tone
freqout 0, 100, 3800 !
goto clik ' back for next keypress
end
doubl ecl i k: ' O button is down for second click
if inl=0 then doubleclik ' O loop until the button goes back up
freqout 0, 50, 3800 ' O play a unique falling sound

freqout 0,50, 2533
freqout 0, 50, 1900

goto clik ' O back to the top
I ongcl i k: ' cone here if pushbutton is held down.
freqout 0,5, 3800, 2533 ' O play a chirpin a loop
if inl=0 then longclik ' O loop here until the button goes back up
goto clik ' back to the top

Earth Measurements Student Guide Version 1.0 » Page 31

Experiment #2: Data Logging

If you press the pushbutton once and quickly release it, the program arrives at cl i k2. Now there is another
race between the button and the timer. This time the button is up to begin with. If you quickly press the
pushbutton a second time before the timer reaches 150, that means you intend a double click. But if the
timer reaches 150 first, that means you just want a single click (or you have slow fingers and need to reset the
preference to a longer time, say 200).

The cl i k1 and cl i k2 routines are similar, but observe that they are not identical. What would happen if the
order of these two statements in the program were switched? If it is not obvious, try it, and think it through.

if inl=0 then doubleclik ' O branch out if the button goes down soon
if n<150 then clik2 ' O loop while tinmer is less than 150

If you want, you could extend this logic to make a routine respond to a

W/ha‘t's triple click, like some word processing programs use to select an entire

Snippet: paragraph. We'll let that be a challenge!

You can "snip" an action from .
one program, and use it (with Now, let's move on.
changes?) in another. Pieces of
Prfc’,grams that Pe”rfg”" S_F’ec':'c Please save this program you have just built on disk. You can experiment
actions —are cated - SNIPPES-h - yith it later on in the challenges. We will be using snippets of what you
Snippets often do not stand on . - .
their own as complete programs. | learned here in programs to come. Use the name "cliks.bs2", or a name

Programmers often exchange | suggested by your instructor.
ideas in the form of snippets.

Page 32 « Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging

Learning to READ and WRITE, the basics.

In this series of lessons, we are going to program the BASIC Stamp to collect readings of temperature and
other variables. We want to log them, that is, collect them at regular intervals of time and store them in a file,
and read them out later for comparisons, charts and graphs. We'll take this a step at a time. First, it is
important to understand how the memory on the BASIC Stamp is organized.

You know from "What's a Microcontroller" that the memory available in the BASIC Stamp Il is of two kinds,
RAM and EEPROM.

It may help you to think about these kinds of memory if you know where they are located physically. Take a
look at Figure 2.3, which shows a top view of the BASIC Stamp II.

OO I rirrr

Figure 2.3: BASIC Stamp Memory

The PIC16C57 chip is the BASIC Stamp's RAM []| rst ||20mhe

and central processor. The 24LC168B is the PIC16C57 -

EEPROM, which holds your PBASIC program and | | BASIC

data we will be storing. baLC Stamp |l
0 [

oot

Variables are created in the RAM memory. You store numbers in RAM with statements like this, using named
variables:

X var byt e
X=76

Variables are very versatile. They can be added and subtracted and used in lots of other kinds of arithmetic,
and they can be parameters in all sorts of commands that are described in the BASIC Stamp Manual Version
1.9. It is very fast to manipulate data in RAM (~200 microseconds per operation), and RAM does not wear out
with use. Trouble is, there isn't very much RAM available on the BASIC Stamp, only 26 bytes. It is not suitable
for storing lots of data. Also, the contents of RAM are lost when the BASIC Stamp loses power, or when the
reset button is pressed. RAM is not suitable for storing "valuable" data that you want to survive when the
power is disconnected.

Earth Measurements Student Guide Version 1.0 « Page 33

Experiment #2: Data Logging

Then there is EEPROM. A greater amount of EEPROM memory is available on the BASIC Stamp, 2048 bytes.
Although part of the EEEPROM is used for your PBASIC program code, there will be some left over for data
storage. One great advantage of EEPROM is that it is semi-permanent. The EEPROM memory retains its
contents with or without power and through resets. The disadvantages of EEPROM are that it is relatively
slow (~10 milliseconds to save a byte of data), and, it will wear out after something like 1,000,000 changes at
one spot. To put this in perspective, if one certain location in EEPROM is reprogrammed over and over, once
per second, it would take you about 11 days to get near the 1,000,000 mark. How many seconds are there in
11 days? On the other hand, at once per hour, it would take 114 years to reach that same mark. (How many
hours are there in 114 years?) It is something to think about in planning. In Earth Measurements we may
write to a single location a hundred times at most, nowhere near 1,000,000.

A final disadvantage of EEPROM is that there are only two instructions that can manipulate the data stored
there. Read retrieves a byte, and wri t e stores a byte. That's it. You cannot do arithmetic directly on the
data stored in EEPROM, nor use it as directly as a parameter in a command. You first have to r ead it into a
variable in RAM, and then manipulate it. And when you are ready, you can wri t e the value of a variable into
EEPROM. With that in mind, the main reason we use EEPROM is to store larger quantities of data, (if where we
won't have to change them too often) and where they will stay permanently if we do change them.

In PBASIC, the dat a statement reserves an area in the EEPROM, and gives it a name:

| og data 7
T the value 7 is loaded into EEPROM at address, "log"
AAA=—mmmmm e the name for the address in EEPROM where the data is located.

Read retrieves a byte from an address (in EEPROM) and copies its value to a variable (in RAM). The value of
the byte in EEPROM is not affected by reading it.

read log, x
Ammmmm RAM variable to receive the data
T where in EEPROM to get the data

W i t e may be used in a program to change the byte stored at an address in EEPROM.
wite l og, 25

a----byte size constant
LY where in EEPROM to put it

Page 34 « Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging

or, with a variable,

wite log, x
S RAM variable
AA=—mmm where in EEPROM to put it

Data in EEPROM is stored as bytes only. (Advanced topic: The RAM variable in the above statements can be a
word, byte, a nib or a bit, but extra bits are padded or dropped on the left end if necessary to fit into a byte-
size EEPROM cell.)

Do not confuse the address, "log" in this case, with the data that is stored there. Try the following program:

Earth Measurenments program 2.7
di stinction of constant, data and vari able

dit con 70 define a constant

| og dat a 7 ' reserve a byte in eeprom initially 7
wor m dat a 240 ' reserve a byte in eeprom initially 240
X var byt e ' define two variables

y var byt e

read | og, x ' read data fromeeprominto the variabl es
read wormy

debug ? dit, ? log, ? x, ?2 worm ? vy ' show all quantities

The value of di t is 70, an ordinary constant. The name di t refers to the value itself. The values of | og and
wor mare constants too, but they have values of 0 and 1, not 7 and 240. The names | og and wor mrefer
indirectly to the data. To read the 7 and the 240, there are two read commands in the program. One read gets
the 7 from EEPROM address | og=0 and puts it in the RAM variable x, and the second read gets the 240 from
EEPROM address wor m=1 and puts it in RAM variable y. The labels | og and wor mhave the addresses 0 and 1
because PBASIC assigns addresses for data statements starting at 0.

Now modify the above program by adding four more lines at the end.

Earth Measurenents program 2.8
witing a variable

dit con 70

| og dat a 7

wor m dat a 240

X var byt e
var byt e

read | og, x

read wormy
debug ? dit, ? log, ? x, ?2 worm ? vy
X=X+1 ' O make a new val ue for x

Earth Measurements Student Guide Version 1.0 Page 35

Experiment #2: Data Logging

y=y/ 2
wite |og,x
wite wormy

O nake a new value for y
O change the value stored at |og
O change the value stored at worm

Run this and press RESET on the Board of Education a couple of times with the debug screen active. You
should see the values of x increase by 1 each time, and the value of y halved each time. Then disconnect the
power momentarily, and reconnect it. The first value you see on the debug screen should be the next one in
the series, showing that the EEPROM retains its data when the power is off. What happened to the 7 and the
240 that were there when you first ran the program? They are gone. The wri t e statement changed those
values. The only way to restore the initial condition is to RUN the program again from the PC. Try it.

There is additional information about the dat a directive on pages 228-230 of the BASIC Stamp Manual
Version 1.9, and also discussion of r ead (p. 302) and wr i t e (p. 341). You will be seeing more of this in lessons
to come!

The EEPROM is often used to store settings and calibration constants that may need to be changed
occasionally. It might be a parameter that tells how hot the temperature has to be before turning on a fan, or
how many seconds have to pass before recording data in a log file. Here is a fun demo program that plays a
musical scale when you single-click the button. How many notes it plays depends on a parameter that is
stored in the EEPROM. If you hold down the button, instead of single-clicking it, the program enters a
calibration routine where you will hear a series of ticks. Release the button after a few ticks, and then single
click the button again.

Earth Measurenents program 2.9
saving a setting in eeprom

dit con 70 length of a dit, mlliseconds

how data 1 initial nunber of sounds

nany var wor d RAM vari abl e for nunber of sounds

n var wor d mul ti purpose vari abl e

tone var wor d the frequency of the sound

clik: | oop here while the button is up
if inl=1 then clik decide if it is up(l) or down(O0)
n=500 initialize the tinmer for longclik

clikl: | oop here until buttonUp or tineout
n=n-1 decrenent the counter for long click

if n=0 then longclik
if inl1=0 the clikl

timeout!--goto longclik with n=0

decide it the button is down(0) or up(1)

t one=4519 here to play tones, this is the first
t one

read how, nany ' get how many to play from eeprom

for n=1 to many ' and play them

freqout 0,dit,tone sound, duration dit, frequency tone

Page 36 Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging

pause dit " brief silence

tone = tone**61858 ' next note of chromatic scale
next " loop back to for if not done.
goto clik ' fromthe top, await keypress
end
I ongcl i k: ' enter here with n=0

freqout 0, 2, 3800 ' short tick

pause 400 ' short delay (tine for response)

n=n+1 " increment n

if inl=0 then longclik " loop until buttonUp

wite how n ' store the new paraneter
goto clik
end

We leave it to you to figure out how it works in detail. It consists of snippets from the foregoing button and
memory routines. (The mathematical formula, tone = tone**61858, generates the chromatic scale, but you
don't have to understand that here.) Do understand the role of read and write. There is one read command
to fetch the number of notes to play, and one write command to store the new number selected by the user.

To test your understanding, can you modify the program as follows:

1. Add a data statement with a label of "dur " and make 7 0 milliseconds it's initial value.

2. Change "di t " from a constant to a byte variable.

3. At the outset of the program read the value from "dur” into the variable "dit". At this point, the
program should run, just as it does now.

4. Atthe end of "l ongcl i k" routine, before it goes back to "cl i k", have it wait for you to press and release
the button a second time.

5. During this second time the button is down, have it increment the value of "n" each time around a loop.

When the button is released, write the value of n into the address "dur ".

7. Verify that the program runs, and that the | ongcl i k routine allows you to change both the number of
notes to be played, and also the duration of the notes.

o

Talking thermometer, Morse code revisited

Now load in the program that you saved in experiment 1. To do this, press ALT-L if you are using the DOS
version of STAMP2.EXE, or press CIRL-O or use the mouse if you are using the WINDOWS version,
STAMP2W.EXE.

Earth Measurements Student Guide Version 1.0 « Page 37

Experiment #2: Data Logging

The program from experiment 1 reads the temperature from the DS1620 chip and displays it on the debug
screen. After you load the program, run it to make sure that it still works. You never can be sure, maybe you
accidentally bumped a wire on your Board of Education, or maybe someone was fooling around with your
program on disk. It is a wise practice to start each step of building a complex system at a point where you
know everything is working.

As it stands, the program displays the temperature on the debug screen once per second. Let's modify it, to
make the piezo transducer send the temperature using Morse code. The Morse code in the first lesson of
Earth Measurements was an introduction - it only sends the number 50. We need a subroutine that can sound
out any arbitrary two-digit number we throw at it. And we'll change the program so that your new
pushbutton will initiate the temperature reading. Starting with the program from lesson 1, the new lines are
remarked with a (J, and the changed lines with a A.

Earth Measurenents program 2. 10
tal ki ng thernoneter, using norse code.

dit con 70 O mlliseconds for Mrse dit
dit2 con 2*di t O constants related to dit
dah con 3*dit O ditto
nc var byt e ' O tenporary for Mrse pattern
xm var byt e ' O norse input variable
j var ni b O index for digits to send
i var ni b " O index for dits and dahs
X var byt e ' define a general purpose variable, byte
degC var byt e ' define a variable to hold degrees Cel sius
' note: DS1520 preprogranmed for node 2.
hi gh 13:shiftout 15,14,[12,2]:1ow 13
out s=9%9000000000000000 ' define the initial state of all pins
' f edcba9876543210
dirs=94111111111111101 ' O as | ow outputs
' O except P1, an input for a pushbutton

freqout 0, 20, 3800 ' beep to signal that it is running
hi gh 13 ' select the DS1620
shiftout 15, 14,1 sbfirst,[238] ' send the "start conversion" comand
| ow 13 " finish the command
clik: " O loop here while the button is up

if inl=1 then clik ' O decide if the button is up(1l) or down(O0)
clikl: ' O loop here while the button is down

if inl=0 then clikl ' O decide if the button is down(0) or up(1)
hi gh 13 ' select the DS1620

shiftout 15,14,1sbfirst,[170] ' send the "get data" command

shiftin 15, 14,1 sbpre, [x] ' get the data
| ow 13 ' end the command

Page 38 « Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging

degC=x/ 2 ' convert the data to degrees C
debug ? degC ' show the tenperature on the debug screen
xmedegC ' O norse routine expects data in variable nx
gosub norse ' O to the subroutine
goto clik ' O.back to wait for button again
nor se: ' O enter here to send byte xmas norse code
for j=1to O ' O send 2 digits, tens then ones.
ntc = xmdig j ' O pick off the (j+1)th digit
nc = 9%41110000011111 >> nt ' O set up pattern for norse code
for i=4 to O ' O 5 dits and dahs
freqout 0,dit2*nc. bitO(i)+dit, 1900 ' O send pattern frombits of nt
pause dit ' O short silence
next " O next i,dit or dah of five
pause dah ' Ointerdigit silence
next ' O next j,digit of two
return ' O back to main
end

Run the program and try it by clicking the button. Listen to the Morse code as you make the temperatures go
up and down. If you are not a ham or Navy radio operator, you may need a little practice to hear the numbers
of the Morse code. But it shouldn't take long. You can read them on the screen as you listen. You can heat up
the DS1620 temperature sensor with you finger, or by placing it under a lamp or in the stream of hot air from
a hair dryer.

This talking thermometer is a useful instrument already. A visually impaired person could use it. Or how
about a biologist doing research on bats in a dark cave? (Listening on an earphone-bats are very sensitive to
high-frequency sound.) Can you think of other situations where this device might be useful?

Please save this program as it stands now on disk. Name of program? (degCtalk.bs2)

Now let's look at the program step by step. (The remainder of this lesson will be detailed explanation of the
Morse code routine - no more programs for you until the challenges!)

Several variables and constants are defined at the top of the program. Some of these you will recognize from
experiment 1, where they appeared in the routine to send the number 50 as Morse code. There is the basic
length of the dit in milliseconds, and the dah, which is defined as three times the length of the dit, and a new
one, dit2, which is defined as twice the length of the dit. There are a couple of other variables, too, xmand nt,
that we'll talk about in connection with the Morse code routine below.

P1 is now an input, for the pushbutton. Pl is set to input by making its bit in di rs equal to zero. The
following statements fix the input and output state of all 16 pins of the BASIC Stamp.

Earth Measurements Student Guide Version 1.0 « Page 39

Experiment #2: Data Logging

out s=%9000000000000000 ' define the initial state of all pins
' f edcba9876543210
dirs=94111111111111101 ' as | ow outputs
Ammmmmmmm oo " this is now an input for the pushbutton

Note the single change from the original program. If we do not set that bit in di r s equal to zero, then the
program cannot read the pushbutton. If you don't believe it, try it and see what happens. You may wonder
about the programs in the first part of this lesson, where we were reading the state of the pushbutton very
well with neither a di r s nor an out s command. The reason is that the BASIC Stamp always starts up with all
its pins as inputs. As a matter of good programming, we are turning them all into outputs, except the ones we
truly need to be inputs. When we make a pin like P1 into an input, it doesn't matter what the state of the
corresponding out s bit is. The outs bit has no effect when the pin is defined as an input.

The central idea of the Morse subprogram is held in the binary pattern, %11110000011111. The % sign mark
it as a binary number. This is the pattern of zeros and ones as they are actually stored in binary brain of the
BASIC Stamp. This binary number does have a standard numerical value (=15391), but the numerical value is
not important here. Quite often in computer science, you have to think of computer data as something other
than a standard numerical value. Think of this as a pattern on an audio tape. If you put a playback head (by
analogy) at the far left and play back 5 bits moving to the right, you come up with 11110. This is going to
translate in Morse code to dah dah dah dah dit, a nine. (It is not a binary number nine, which would be 1001 -
instead, it is a pattern for Morse code number 9 - there are many ways to represent numbers!) Depending on
where you start on the "tape" different code patterns result, in fact, the total pattern is arranged to give the
code patterns for the Morse code numerals numbers in order. It's a trick.

11110000011111
AAAAA=—— e > 11110, dah dah dah dah dit nine, playing back five bits
ANAAA=—mm e e > 11100, dah dah dah dit dit eight
ANAAA=——m e e e > 11000, dah dah dit dit dit seven
L Y > 10000, dah dit dit dit dit six
ARAAA=———————— > 00000, dit dit dit dit dit five
ARAAA=——————— > 00001, dit dit dit dit dah four
AAAAA=—————— > 00011, dit dit dit dah dah three

AAAAA=————— > 00111, dit dit dah dah dah two
ANAAA————— > 01111, dit dah dah dah dah one
aann----> 11111, dah dah dah dah dah zero

Page 40 * Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging

Now let's take the Morse code routine step by step, and really dissect it. First, you have to recognize that this
is a subroutine, that starts with the label, "nmorse: ", and ends with the "return” instruction. The main
routine, after it acquires the temperature reading in degC from the DS1620 sensor, and puts it in the variable
xm; it executes a gosub nor se command. The mor se subroutine does its thing and then returns execution to
the instruction just after the gosub morse instruction, which is "got o cl i k". By writing the morse routine as
a subroutine, we will be able to use it over again at different points in a our program, as it develops.

Variable xmis the one that will be sounded out as Morse code. In the nor se subroutine itself there are two
for - next loops, one inside the other. The outside loop has an index j:

for j=1to O
ntc = xmdig j

nt = %41110000011111 >> nt

next
return

WThef{’s Ghoo

Index and Pointer:

An index is a variable that steps
through a sequence of values. For
example, "j" in the for-next loop steps
through the values of 1 and 0. A
pointer is a variable that specifies
where in memory, or where in some
ordered set, to retrieve information.
For example, the variable "j" is both an
index and a pointer. It points to a digit
in the variable xm. The index "I" in this
same program is a pointer to the bits
(binary digits) of the variable mc. In
lessons to come, we will use indices
and pointers to refer to the data in
the EEPROM log, as in, 1% reading, 2"
reading, and so on.

O send 2 digits, nsd 1st.

pick off the jth digit

O set up pattern for norse code
nore norse here

O next digit of two

)

When the program first arrives at the norse routine, it first sets |
equal to 1, and then continues with j=1 all the way through the loop,
including everything in "more morse stuff". The keyword, next, is the
turning point in the for-next loop, and at that point the program jumps
back up to the corresponding for, sets j=0, and executes all the way
through again, to the next. Note that the BASIC Stamp knows how to
count backwards! After j has taken on the values 1 and 0, that's it, the
loop ends, and the program returns to the main program, and back to
clik.

There are two math statements in this outer loop. The first one is:
nc = xmdig j.

This "di g" is an operator, kind of like "plus" or "divided hy". It sits
between two numbers, xm and j , and returns the (j+1)th digit of xm It
is easiest to illustrate with a specific example. Suppose the value of
xm=25. On the first time through the loop, the value of j is 1, and the

result of (mc = 25 dig 2) will be (mc=2), because 2 is the tens digit of 25. On the second time through the loop,
the result of (mc = 25 dig 0) will be nt=5, because 5 is the ones digit of 25.

Earth Measurements Student Guide Version 1.0 » Page 41

Experiment #2: Data Logging

25
j=1 point to the tens digit ----»
=0 point to the ones digit ----- A

The logic of this can be extended to larger numbers, for example, j=3 would point to the thousands digit.
However, in this Morse code routine we will only need 2 digits.

Now we have a number between 0 and 9 inclusive in the variable mc. The next statement sets up the pattern
for the Morse code.

nt = 9%41110000011111 >> nt ' (O set up pattern for norse code

The symbol >> is another operator that goes between two numbers. The constant, %41110000011111, is the
binary pattern we were talking about above. The >> operator is one that operates specifically on binary
patterns. It is called a shift operator. (Shifts are very important in computer science.) It shifts the binary
pattern to the right a certain number of places (mc places) and drops that same number of bits off the right
end. Again, to illustrate, the first time through the loop, the digit is 2 when the program arrives at this
command:

BEFORE mc= 11110000011111 >> 2

AFTER 111100000111 ' pattern shifted two to the right
\11 " two bits dropped
AMAAA—— 5 bits are the morse pattern for "2"

And the second time through the loop, the digit is 5:

BEFORE mc= 11110000011111 >>5

AFTER 111100000 ' pattern shifted five to the right
\11111 " five bits dropped
AAAAA === mmmmm 5 bits are the morse pattern for "5"

What has happened is that the Morse code pattern has ended up in bits 4 to 0 of the variable nt. In the
example, 00111 represents 2 in Morse code, and 00000 represents 5. Above we talked about moving a
"playback head" over the "tape"; here we have moved the "tape” over the "playback head", ready to play back
the five bits on the right.

Page 42 « Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging

Now the Morse code pattern is in position, and we come to the inner for-next loop:

for i=4 to O ' 05 dits and dahs
freqout 0,dit2*nc.bitO(i)+dit, 1900 ' O send pattern frombits of nmd
pause dit ' O short silence
next ' O next dit or dah of five
pause dah " Ointerdigit silence

The index here is i, and it runs through 5 values, counting backwards from 4 to zero. The f r eqout command
plays a dit or dah for each time around the inner loop. Between each sound, there is a short pause equal in
width to a dit. After the 5 dits and dahs of one digit are played, there is a longer pause, equal in width to a
dah, and then the program loops back to get the ones digit, and play it's five bits in the same way.

The fregout command is familiar, except here the duration is neither a constant nor a simple variable. It is
an expression. PBASIC lets you do that. The expression is:

dit 2*nc. bi t0(i) +di t
AAAAAAAAAA==————— this has a value of either 0 or 1.

Let's start out by stating that nc. bi t 0(i) is a variable that has a value of either zero or one. So the
statement reduces with simple multiplication and addition to either,

dit2* 0 + dit ==> dit
or
dit2 * 1 + dit ==> 3*dit ==> dah

The fr eqout command plays a dit or a dah, depending on the value of the mystery variable.

So what exactly is nc. bit0(i) ? One powerful feature of PBASIC is that it allows you easy access to
individual bits in that byte. The byte, mc, has 8 bits. The notation, nt. bi t 0 is called a modifier of the byte
variable mc. It is really just name for the least significant bit of that byte. The second bit is nt. bi t 1, and so
on nt. bi t 4, is the 5th bit. It is simply a way of naming the bits, a syntax that is built into the PBASIC
language.

There is still another way to refer to those same bits, using a variable as a pointer to bits in the byte. This

notation is nd. bi t 0(i). For example, md. bi t 0(4) and nd. bi t 4 both refer to the same bit. Literally it
means, "the fourth bit up from md.bit0". See the BASIC Stamp manual, v1.9 pp 221-224 for more explanation.

Earth Measurements Student Guide Version 1.0 « Page 43

Experiment #2: Data Logging

Here is the way it works:

00111 <-- these are the five lower bits of the byte variable mc
r----mc.bit0 or mc.hit0(0) diffferent names for the same bit
JY— mc.bitl or mc.bit0(1)
Ammmmmem mc.bit2 or mc.bit0(2)
P mc.bit3 or mc.bit0(3)
PR mc.bit4 or mc.bit0(4)

The variable i is the pointer. The power of this indirect, or array naming, is that the program loop (for i=4 to
0) can step through the bits of the byte variable, nc, one by one, and pick off the binary 0 or 1 values of the
individual bits. Those are the bits that need to be sounded out as 0=>dit and 1=>dah. Here is another way
we could have played the five dits and dahs, without using a for-next loop:

freqout 0, dit2*nc. bitO+dit, 1900 O first bit
pause dit 3 short silence
freqout 0,dit2*nc. bitl+dit, 1900 O second bit
pause dit 3 short silence
freqout 0,dit2*nc. bit2+dit, 1900 O third bit
pause dit O short silence
freqout 0,dit2*nc. bit3+dit, 1900 O fourth bit
pause dit 3 short silence
freqout O, dit2*nt. bit4+dit, 1900 O fifth bit
pause dit O short silence

You see, this refers directly to each bit, one at a time. But it comes out much shorter, and more elegant (?)
using the for-next loop and the index as a pointer to the bits.

Whew! That was a lot of explanation for a short stretch of program. But it contains some advanced ideas.
How to interpret a number as a pattern. Index and pointer. How to extract decimal digits. The dig and shift
operators, how to use an expression as a parameter. How to use array modifiers of PBASIC variables. These
are the stuff of programming a microcontroller.

Page 44 « Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging g

Challenge!

Hook up an led to P5, so that high 5 will turn it on. Write a program to turn the led ON when you click the
button once, and OFF when you click the button again. (Push on, push off action). Hint: although there are
several ways to do this, the t oggl e command may help. See page 329 of the BASIC Stamp Manual Version 1.9.

(A) Make a BS2 program that prints "working" on the debug screen, and plays a sound, once each time you
click the button. Hint: print a message on the screen using commands like debug "working", CR
CRstands for "carriage return”.

(B) Then program it so that if you hold the button down while you press and release RESET on the Board of
Education, it will not go immediately to the "working" routine. Instead it will print "l await your
instructions” on the debug screen, play a different sound, and delay until you click the button again.
(Think about printers, how some will print a "test page" if you hold down some button on the front panel
as you turn the printer on.)

The program 2.10 measures the temperature in degrees Celsius.
(A) Modify the program so that it displays degrees Fahrenheit, and plays it in Morse code.

(B) Modify the Morse code routine so that it will play three digits instead of just two, in case the Fahrenheit
temperature goes above 99. (C-advanced) If you want to get fancy, make it so that it will not play leading

zeros, that is, if the reading is 76 degrees F, it will play "7","6", not "0","7","6").

Then try this:

(A) Start with a byte of data, initially zero, stored in EEPROM. Each time the button is single-clicked,
increment the byte in EEPROM by one (r ead, increment, wri t e), and display the current value on the
debug screen.

(B) When the value reaches 7, print the words "access denied" on the debug screen, and make a sound and

blink the led on and off repeatedly. At that point, if you reset the stamp or remove the power and then
restore it, the "alarm" should come on right away (r ead & decision at top of program.).

Earth Measurements Student Guide Version 1.0 « Page 45

Experiment #2: Data Logging

(C) (advanced) Think of a way, using a special action on the button, like holding it down for a long time, to
reset the value in EEPROM to zero. That will allow access so you can click the button 7 more times before
the alarm re-sounds and locks you out.

Write a program that plays a unique sound if you triple click the pushbutton.

Page 46 * Earth Measurements Student Guide Version 1.0

Experiment #2: Data Logging

Earth Measurements Student Guide Version 1.0 » Page 47

Appendix A: Parts Listing and Sources

Parts Listing Al components (next page) used in the Earth Measurements
experiments are readily available from common electronic suppliers.
Customers who would like to purchase a complete kit may also do so
through Parallax. Parallax adds a small packaging and handling fee to
the parts, partially offset by our volume purchases made to the
suppliers. Customers may realize small savings of 10% on low volumes (~10 units) of the "Earth
Measurements” Parts Kit by building their own component kits, but in higher volumes the savings from the
Parallax kit is more substantial.

Each experiment requires the Board of Education - Full Kit (#28102):

Parallax also manufactures the Board of Education Kit (#28150), consisting of the Board of Education and
pluggable wires only. Use the Board of Education Kit if you already have a BS2-IC module and power supply.
Individual pieces may also be ordered using the Parallax stock codes shown below.

Board of Education - Full Kit (#28102

Parallax Code# Description Quantity
28150 Board of Education 1
800-00016 Pluggable wires 6
BS2-IC BASIC Stamp Il module 1
750-00008 300 mA 9 VDC power supply 1
800-00003 Serial cable 1

Board of Education Kit (#28150

Parallax Code# Description Quantity
28102 Board of Education and pluggable wires 1
BS2-IC Pluggable wires 6

This printed documentation is very useful for additional background information:

BASIC Stamp Documentation

Parallax Code# Description Internet Availability?

27919 BASIC Stamp Manual Version 1.9 http://www.stampsinclass.com

28125 Earth Measurements Text http://www.stampsinclass.com

27951 "Programming and Customizing the | Table of Contents only from
BASIC Stamp Computer” http://www.stampsinclass.com

Page 48 * Earth Measurements Student Guide Version 1.0

Appendix A: Parts Listing and Sources

The Earth Measurements experiments require the Earth Measurements Parts Kit (#28126)

The contents of the Earth Measurements Parts Kit is listed below. These parts are required for building the
entire project. In case you need specific replacement parts from Parallax the stock code is listed for each
individual component. If you would rather purchase these components elsewhere and need assistance
identifying an appropriate source for these parts, please feel free to contact us at
stampsinclass@parallaxinc.com.

Earth Measurements Parts Kit (#28126)

Parallax Code# Description Quantity
150-01011 100 ohm + watt 5% resistor 3
150-01020 1K + watt 5% resistor 1
150-01030 10K + watt 5% resistor 1
150-01040 100K + watt 5% resistor 1
150-01000 10 ohm 1W resistor metal oxide 1
200-01040 0.1 uF mono radial capacitor 3
200-01031 0.01 uF 50V capacitor 1
200-02240 0.22 uF 50V capacitor 3
350-00012 Photodiode, blue enhanced (Photonic Detectors) 1
350-00001 LED, green 1
350-00006 LED, red 1
500-00004 2 A high gain transistor 1
400-00001 Pushbutton 1
604-00002 DS1620 Digital Thermometer (Dallas Semiconductor) 1
604-00010 555 timer, 8-pin DIP 1
700-00002 4-40 machine screws 2
700-00003 4-40 x 3/8" nut 2
800-00016 3" jumper wires 10
800-00021 16" red jumper wire 2
800-00022 16" black jumper wire 2
900-00001 Piezospeaker (sound transducer) 1
28130 Temperature probe (Analog Devices 592 soldered to two 1

foot-long wires, heat-shrinked and glued for protection)

700-00018 Pump (Edmund Scientific X50-345) 1
N/S Cup spanner made of plastic or printed circuit board, with 1

two holes for screws

Earth Measurements Student Guide Version 1.0 » Page 49

Appendix A: Parts Listing and Sources

The Parallax distributor network serves approximately 40 countries
Sources world-wide. A portion of these distributors are also Parallax-authorized
“Stamps in Class” distributors — qualified educational suppliers. Stamps in
Class distributors normally stock the Board of Education (#28102 and
#28150) and sometimes the Earth Measurements Parts Kit (#28126).
Several electronic component companies are also listed for customers who wish to assemble their own Earth

Measurements Parts Kit.

Country Company

United States Parallax, Inc.

3805 Atherton Road, Suite 102
Rocklin, CA 95765 USA

http://www.stampsinclass.com
http://www.parallaxinc.com

(916) 624-8333, fax (916) 624-8003

Notes
Parallax and Stamps in Class source.
Manufacturer of the BASIC Stamp.

United States Peter H. Anderson
915 Holland Road
Bel Air, MD 21014

http://www.phanderson.com

(410) 838-6500, fax (410) 836 8526

Parallax Stamps in Class distributor and
professor. Stocks many do-it-yourself BASIC
Stamp kits using the "home-brew" approach.

United States Digi-Key Corporation
701 Brooks Avenue South
Thief River Falls, MN 66701

http://www.digi-key.com

(800) 344-4539, fax (218) 681-3380

Source for electronic components. Parallax
distributor. May stock Board of Education.
Excellent source for components.

United States Mouser Electronics
345 South Main
Mansfield, TX 76203

http://www.mouser.com

(800) 346-6873, fax (817) 483-6899

Source for electronic components. Parallax
distributor. May stock Board of Education in 1999.
Excellent source for components.

Australia Microzed Computers
PO Box 634

Armidale 2350
Australia

http://www.microzed.com.au

Phone +612-67-722-777, fax +61-67-728-987

Parallax distributor. Stamps in Class distributor.
Excellent technical support.

Page 50 * Earth Measurements Student Guide Version 1.0

Appendix A: Parts Listing and Sources

Australia

RTN

35 Woolart Street

Strathmore 3041

Australia

phone / fax +613 9338-3306
http://people.enternet.com.au/~nollet

Parallax and Stamps in Class distributor.

Canada

Aerosystems

3538 Ashby

St-Laurent, QUE H4R 2C1

Canada

(514) 336-9426, fax (514) 336-4383

Parallax distributor and Stamps in Class
distributor.

Canada

HVW Technologies

300-8120 Beddington Blvd NW, #473
Calgary, AB T3K 2A8

Canada

(403) 730-8603, fax (403) 730-8903
http://www.hvwtech.com

Parallax distributor and Stamps in Class
distributor.

Germany

Elektronikladen

W. Mellies Str. 88

32758 Detmold

Germany

49-5232-8171, fax 49-5232-86197
http://www.elektronikladen.de

Parallax distributor and Stamps in Class
distributor.

New Zealand

Trade Tech

Auckland Head Office, P.0. Box 31-041
Milford, Auckland 9

New Zealand

+64-9-4782323, fax 64-9-4784811
http://www.tradetech.com

Parallax distributor and Stamps in Class
distributor.

United Kingdom

Milford Instruments

Milford House

120 High St., S. Milford

Leeds YKS LS25 5AQ

United Kingdom
+44-1-977-683-665

fax +44-1-977-681-465
http://www.milinst.demon.co.uk

Parallax distributor and Stamps in Class
distributor.

Earth Measurements Student Guide Version 1.0 » Page 51

Appendix A: Parts Listing and Sources

Boooks and If you are new to BASIC Stamps, electronics, or programming

Internet there are several internet and printed sources you may wish to
investigate.

Resources

Books and Publications

Programming & Customizing the Basic Stamp Computer by Scott Edwards. ISBN 0-07-913684-2. Available
from Parallax (#27905) and Amazon (http://www.amazon.com).

Parallax BASIC Stamp Manual Version 1.9 from Parallax (#27919) and distributors.

Nuts and Volts Magazine Stamp Applications. Published each month in Nuts and Volts magazine
(http://www.nutsvolts.com), with past issues available for free download from their web site.

Getting Started in Electronics by Forrest M. Mimms. Available at Radio Shack stores.

Internet

Parallax web site http://www.parallaxinc.com and the Parallax Stamps in Class web site
http://www.stampsinclass.com include free downloadable BASIC Stamp resources.

Tracy Allen, Ph.D. web site at http://www.emesystems.com. Dr. Allen wrote the Earth Measurements series and
uses the BS2SX-IC in his commercially available dataloggers.

Al Williams Consulting hosts the BASIC Stamp Project of the Month at http://www.al-williams.com.

List of Stamp Applications from http://www.hth.com provides over 150 projects using the BASIC Stamp.

Page 52 Earth Measurements Student Guide Version 1.0

Appendix A: Parts Listing and Sources

Earth Measurements Student Guide Version 1.0 Page 53

Appendix B: Building the AD592 Temperature Probe

Temperature
Probe

You'll need the following materials:

(1
(2
(2
(1
(1

—_——— — —

heat gun

To build the probe:

1. Identify the AD 592's (-),
NC, and (+) pins from this
picture as viewed from
the bottom.

2. Slip the solder sleeve over
the black wire and pin 3 (-).
Slip another solder sleeve
over the red wire and pin 1
(+)- Heat up the connections
until the wires are joined.

If you have no solder sleeves
you can use heat shrink
tubing.

Building the AD592

The Earth Measurements experiments use the AD 592
temperature transducer. The part needs to be protected
before being inserted into liquid. Parallax builds a custom
temperature probe (#¥28130), but you can do this yourself from
these plans. An abbreviated datasheet for the AD 592 is
included in Appendix F of this text.

AD592 Temperature Transducer in plastic TO-92 case

16" wires, one black and one red, stripped on both ends (or eq.)

1" solder sleeves (Powell Electronics CWT-1502 or eq.)

14" adhesive lined heat shrink tubing with +" inside diameter (Digi-Key #EPS3316NK-ND or eq.)

3. Slip the heat shrink tubing over the
entire package. Fasten the package

PN PNz PM1 | with a heat gun, and while it's still
o o0 ad | hot clamp the top portion to ensure
Tl ani | that it stays shut.
Clamp here >
AD592 AD592
solder
‘fsleeves
S
5 ¢

Page 54 * Earth Measurements Student Guide Version 1.0

Appendix C: Resistor Color Code

. Most common types of resistors have colored bands that indicate
Resistor Color their value. The resistors that we're using in this series of
Code experiments are typically "1/4 watt, carbon film, with a 5%

tolerance”. If you look closely at the sequence of bands you'll
notice that one of the bands (on an end) is gold. This is band #4, &
the gold color designates that it has a 5% tolerance.

Bands 1 through 3 tell us what the actual value is, measured in “ohms". The higher the value, the less current
is permitted to flow through it (at a given voltage).

The color values are as follows:

Black
Brown
Red
Orange
Yellow
Green
Blue
Violet
Grey
White

©OCoo~NOOUVMWNRFO

To determine the value of a resistor, look at the first color, determine its value from the above chart & write
it down. Do the same for the second band. The third band "“is the number of 0's to write down". For
example:

A resistor has the following color bands:

Band #1. = Red

Band #2. = Violet

Band #3. = Yellow

Band #4. = Gold
Looking at our chart above, we see that Red has a value of 2.
So we write: “2".

Violet has a value of 7.
So we write: “27"

Earth Measurements Student Guide Version 1.0 » Page 55

Appendix D: Data Sheets

Yellow has a value of 4.
So we write: “27 and four zeros" or “270000".

This resistor has a value of 270,000 ohms (or 270k) & a tolerance of 5%.

Page 56 * Earth Measurements Student Guide Version 1.0

Appendix D: Data Sheets

Appendix D consists of abbreviated data sheets for the key

components used in these experiments. The full data sheets are
Data Sheets available from the manufacturer's web sites shown below. This text
includes the first two pages only of the data sheets.
wirwsLampisaclass, com
Datasheet Locator
Component Manufacturer’s internet address Pages on web site
Analog Devices 592 http://www.analogdevices.com/ 8
Dallas Semiconductor 1620 | http://www.dalsemi.com/ 12
Edmund Scientific Pump http://www.edmundscientific.com/ 1

Earth Measurements Student Guide Version 1.0 « Page 57

