
What’s a Microcontroller?
Student Guide for Experiments #1 through #6

Version 1.4

Warranty

Parallax warrants its products against defects in materials and workmanship for a period of 90 days. If you discover a defect, Parallax
will, at its option, repair, replace, or refund the purchase price. Simply call for a Return Merchandise Authorization (RMA) number,
write the number on the outside of the box and send it back to Parallax. Please include your name, telephone number, shipping
address, and a description of the problem. We will return your product, or its replacement, using the same shipping method used to
ship the product to Parallax.

14-Day Money Back Guarantee

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a full refund. Parallax
will refund the purchase price of the product, excluding shipping / handling costs. This does not apply if the product has been alterned
or damaged.

Copyrights and Trademarks

This documentation is copyright 1999 by Parallax, Inc. BASIC Stamp is a registered trademark of Parallax, Inc. Other brand and
product names are trademarks or registered trademarks of their respective holders.

Disclaimer of Liability

Parallax, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of warranty, or under any
legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment or property, and any costs or
recovering, reprogramming, or reproducing any data stored in or used with Parallax products. Parallax is also not responsible for any
personal damage, including that to life and health, resulting from use of any of our products.

Internet Access

We maintain internet systems for your use. These may be used to obtain software, communicate with members of Parallax, and
communicate with other customers. Access information is shown below:

E-mail: stampsinclass@parallaxinc.com
Ftp: ftp.parallaxinc.com and ftp.stampsinclass.com
Web: http://www.parallaxinc.com and http://www.stampsinclass.com

Internet BASIC Stamp Discussion List

We maintain an e-mail discussion list for people interested in BASIC Stamps. The list works like this: lots of people subscribe to the list,
and then all questions and answers to the list are distributed to all subscribers. It’s a fun, fast, and free way to discuss BASIC Stamp
issues and get answers to technical questions. To subscribe to the BASIC Stamp list, send e-mail to majordomo@parallaxinc.com and
write subscribe stamps in the body of the message.

We also maintain a list exclusively for educators who use the BASIC Stamp in the classroom. Educators discuss topics like protecting
the BASIC Stamp from damage, creating their own lessons, using the Parallax Stamps in Class material, and robotics. You can join this
list at the http://www.stampsinclass.com web site.

Contents

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 1

Preface..3
Audience and Teacher’s Guides ..3
Future Experiments ...4
Copyright and Reproduction...4
Special Contributors ...4

Experiment #1: What's a Microcontroller? ...5
Parts Required ..7
Build It!..7
Program It!.. 11
Questions... 18
Challenge!.. 19
What have I learned?.. 20
Why did I learn it?.. 21
How can I apply this? .. 21

Experiment #2: Detecting the Outside World...23
Parts Required ... 23
Build It!... 24
Program It!.. 25
Questions... 31
Challenge!.. 32
What have I learned?.. 33
Why did I learn it?.. 34
How can I apply this? .. 34

Experiment #3: Micro-controlled Movement: .. 35
Parts Required ... 36
Build it!... 36
Program It!.. 38
Questions... 45
Challenge!.. 46
What have I learned?.. 47
What did I learn it?.. 48
How can I apply this? .. 48

Contents

Page 2 • “What’s a Microcontroller?” Student Guide Version 1.4

Experiment #4: Simple Automation ...49
Parts Required..50
Built It! ..50
Program It! ..52
Questions...58
Challenge! ..59
What have I learned? ..60
Why did I learn it?..61
How can I apply this? ..61

Experiment #5: Measuring an Input ...63
Parts Required..64
Build It! ...64
Program It! ..67
Questions...71
Challenge! ..72
What have I learned? ..73
Why did I learn it?..74
How can I apply this? ..74

Experiment #6: Manual to Digital...75
Parts Required..76
Build It! ...76
Program It! ..79
Questions...85
Challenge! ..86
What have I learned? ..87
Why did I learn it?..88
How can I apply this? ..88
Parts Listing...89

Appendix A: Parts Listing and Sources ..89

Appendix B: PBASIC Quick Reference Guide ..97

Appendix C: Reading the Resistor Color Code .. 109

Preface

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 3

Preface

In 1979 Chip Gracey had his first introduction to programming and electronics: the Apple II
computer. Chip was instantly interested in the new machine, writing BASIC code to display graphics and
removing the case to see the electronic components. This experience quickly led to dismantling video game
source code and household electronic hardware, and trying to use these devices for purposes other than
originally intended. Hobby transformed into a business, and by the time he was a senior in high school Chip
was running a small business from his bedroom.

High schools offered no software or hardware classes in 1982, and when Chip graduated in 1986
college just didn’t seem like the right place to start running a business. Instead, he and a friend Lance Walley
started “Parallax” from their apartment. The first products included sound digitizers for the Apple II and 8051
programmers.

The business grew slowly until 1992 when Parallax released the first BASIC Stamp. Parallax knew the
BASIC Stamp would be special – it was the tool they needed to do their own hobby projects. The fact that the
BASIC Stamp would create it’s own industry was probably unknown by the Parallax founders, but it quickly
became apparent that the small computer had it’s own group of enthusiasts. It let ordinary people program a
microcontroller for the first time, and gave them powerful I/O commands that made it easy to connect to
other electronic components. By the end of 1998 Parallax sold over 125,000 BASIC Stamp modules and
distributed a complete series of supporting peripherals through over 40 world-wide sales channels.

What does this story have to do with Stamps in Class curriculum? The Stamps in Class curriculum is
designed to introduce students and teachers to microcontrollers using software basics and simple hardware,
integrating the two without a tremendous investment (the curriculum is free and Parallax has educational
prices for the hardware). It starts from the bottom, with hands-on projects and programming. This is the way
Chip learned microcontrollers, and gained enough engineering experience to design the BASIC Stamp.

Audience and Teacher’s Guides

The “What’s a Microcontroller?” curriculum was created for ages 15-18 with a purpose of providing a
entry-level background to microcontroller programming and interfacing, but it is also appropriate for college
classes with additional instructor supplementary material. The curriculum combines software and hardware,
first showing the student how to build the circuit, then program the microcontroller, and finally challenging
them to improve the design. Teacher’s guides for each lesson are available by e-mail request to
stampsinclass@parallaxinc.com.

Of course some electronic background would be helpful. Electronic principles are not explained in
depth since there are many great texts to be read side-by-side with this curriculum. The Radio Shack Forrest
Mimm’s Getting Started in Electronics are the best accompaniment. Some other more advanced resources
include the Scott Edwards’ Programming and Customizing the BASIC Stamp Computer and the Parallax BASIC
Stamp Manual Version 1.9. See Appendix A for book sources..

Preface

Page 4 • “What’s a Microcontroller?” Student Guide Version 1.4

Future Experiments

The “What’s a Microcontroller?” series is comprised of the first six experiments included in this book.
Future lessons will also be published in sets of six. The contents of these experiments are based on feedback
from students and instructors. If you have ideas for future experiments please send them to the editorial
team at stampsinclass@parallaxinc.com. We also accept experiment contributions, just be sure to see the
editorial guidelines from our Stamps in Class web site.

Copyright and Reproduction

Stamps in Class lessons are copyright  Parallax 1999. Parallax grants every person a conditional
right to download, duplicate, and distribute this text without our permission. The condition is that this text, or
any portion thereof, should not be duplicated for commercial use resulting in expenses to the user beyond the
marginal cost of printing. That is, nobody would profit from duplication of this text. Preferably, duplication
would have no expense to the student. Any educational institution wishing to produce duplicates for their
students may do so without our permission. This text is also available in printed format from Parallax.
Because we print the text in volume, the consumer price is often less than typical xerographic duplication
charges. This text may be translated to any foreign language with the permission of Parallax, Inc.

Special Contributors

This curriculum was written by I-Four of Grass Valley, California. I-Four’s primary author is Matt
Gilliland. Parallax stumbled across Matt on the internet. Matt is a true educational proponent - he personally
tested these experiments on a group of enthusiastic neighborhood kids. This initial feedback was important
since it resulted in substantial revisions (if you find any mistakes or areas for improvement please let us know
by e-mail to stampsinclass@parallaxinc.com). I-Four also authored portions of the Full Option Science System
(FOSS) junior-high level electronics program with The Lawrence Hall of Science at University of California,
Berkeley.

Special thanks also to the Parallax team who provided ideas and content for the program. The
Parallax staff who designs, manufacturers, and accepts orders and packages the Stamps in Class products is a
key part of the Stamps in Class program.

Of course, it took a BASIC Stamp to make the program possible. Thank you Chip for creating this
unique product and new industry.

Experiment #1: “What’s a Microcontroller?”

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 5

CPU:
Central Processing Unit.
This term specifically refers
to the integrated circuit
(contained inside the large
computer “box”) that does
the “real computing”.
However, sometimes the
term is used (although
incorrectly) to include
everything inside the “box”,
including the hard & floppy
drives, CD-ROM, power
supply & motherboard.

Microcontroller:
An integrated circuit that
contains many of the same
items that a desktop
computer has, such as CPU,
memory, etc., but does not
include any “human
interface” devices like a
monitor, keyboard, or
mouse. Microcontrollers are
designed for machine
control applications, rather
than human interaction.

Experiment #1:
What’s a
Microcontroller?

Most of us know what a computer looks like. It usually has a
keyboard, monitor, CPU (Central Processing Unit), printer, and a
mouse. These types of computers, like the Mac or PC, are
primarily designed to communicate (or “interface”) with humans.

Database management, financial analysis, or even word-processing are all accomplished inside the “big box”
that contains the CPU, memory, hard drive, etc. The actual “computing”, however, takes place within the CPU.

If you think about it, the whole purpose of a monitor, keyboard, mouse, & even the printer is to “connect” the
CPU to the outside world.

But did you know that there are computers all around us, running programs &
quietly doing calculations, not interacting with humans at all? These computers
are in your car, on the Space Shuttle, in your kid brother’s toy, and maybe even
inside your hairdryer.

We call these devices “microcontrollers”. Micro because they’re small, and
controller because they “control” machines, gadgets, whatever.
Microcontroller’s by definition then, are designed to connect to machines,
rather than people. They’re cool because, you can build a machine or device,
write programs to control it and then let it work for you automatically.

There is an infinite number of applications for microcontrollers. Your
imagination is the only limiting factor!

Hundreds (if not thousands) of different variations of microcontrollers are
available. Some are programmed once & produced for specific applications,
such as controlling your microwave oven. Others are “re-programmable”,
which means they can be used over and over for different applications.
Microcontrollers are incredibly versatile – the same device may control a model
rocket, a toaster, or even your car’s antilock braking system.

This experiment will introduce us to one very popular microcontroller called the
BASIC Stamp. The BASIC Stamp is a sophisticated array of circuitry, all
assembled onto a very small printed circuit board (PCB). In fact, the PCB is the
same size as many other types of “integrated circuits”. The BASIC Stamp is
shown on the following page in Figure 1.1.

Experiment #1: “What’s a Microcontroller?”

Page 6 • “What’s a Microcontroller?” Student Guide Version 1.4

Figure 1.1: BASIC Stamp II
This is a small picture of the BASIC
Stamp II module. The actual module is
about the size of a postage stamp.

Writing programs for the BASIC Stamp is accomplished with a special version of the BASIC language (called
PBASIC). Most other microcontrollers require some form of programming that may be very difficult to learn.
With the BASIC Stamp, you can create simple circuits and programs in a matter of minutes (which we’re about
to do!). However, do not be misled into thinking that all the BASIC Stamp can do is “simple stuff”. Many
sophisticated commercial products have been created & sold, using the BASIC Stamp as a “brain”.

When we create devices that have a microcontroller acting as a “brain”, in many ways we are attempting to
mimic how our own bodies operate.

Your brain relies on certain information in order to make decisions. That information is gathered through
various senses such as, sight, hearing, touch, etc. These senses detect what we’ll call the “real world”, & send
that information to your brain for “processing”. Conversely, when your brain makes a decision, it sends
signals throughout your body to do something to the “real world”. Utilizing the “inputs” from your senses, and
the “outputs” from your legs, arms, hands, etc., your brain is interfaced & interacting with the real world.

As you’re driving down the road, your eyes detect a deer running out in front of you. Your brain analyzes this
“input”, makes a decision, and then “outputs” instructions to your arms & hands, turning the steering wheel to
avoid hitting the animal. This “input / decision / output” is what microcontrollers are all about. We call this
input/output, or “I/O” for short.

This first lesson will introduce you to the output function of the BASIC Stamp, and each following lesson will
introduce new ideas and experiments for you to try. You will be able to use the ideas from these lessons to
invent your own applications for microcontroller programs and circuits.

PCB:
Printed Circuit Board.
Complex electronic circuits
require many electrical
connections between
components. A printed
circuit board is simply a rigid
piece of (usually) fiberglass
that has many copper wires
embedded on (or sometimes
in) it. These wires carry the
signals between individual
components in the circuit.

Experiment #1: “What’s a Microcontroller?”

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 7

Parts
Required

Build It!

For each experiment, you need an IBM-compatible PC running DOS
2.0 or higher, Win95/98/or NT4.0. For Experiment #1 you will need
the following:

(1) BASIC Stamp II module
(1) “Board of Education”
(1) Programming Cable
(2) LED’s (light emitting diodes)
(2) 470 ohm, ¼ watt resistors (yellow, violet, brown)
(1) 9 volt battery or wall transformer connected to the Board of Education
(6) Connecting wires
(1) BASIC Stamp Editor program, either the DOS or Win95 version

Any microcontroller (or computer) system consists of two
primary components: hardware & software. The hardware is the
actual physical components of the system. The software is a list
of instructions which reside inside the hardware. We will now
create the hardware, & then write a software program to
“control it”.

In order for our microcontroller to interact with the real world, we need to assemble some “hardware”. We’ll
be using a PCB called the “Board of Education”. This board was created to simplify connecting “real world
stuff” to the BASIC Stamp. Connectors are provided for power (wall transformer or 9 volt battery), the
programming cable, & the Input / Output pins of the BASIC Stamp. There is also a “prototyping area” or
breadboard (the white board with all the holes in it). It is this area that we’ll be building our circuitry. See
Figure 1.2.

Figure 1.2: Board of Education
This is where we will build our circuit.
The socket is for the BASIC Stamp
module, and the breadboard is for your
projects. The BASIC Stamp is oriented
with the large chip closest towards the
“AppMod Connector”

Experiment #1: “What’s a Microcontroller?”

Page 8 • “What’s a Microcontroller?” Student Guide Version 1.4

In this experiment we will be connecting two Light Emitting Diodes (LED’s) to the
BASIC Stamp. LED’s are a special form of lamp, that for various reasons, are
easily connected to microcontroller devices.

There are two very important things to remember when connecting LED’s to the
BASIC Stamp. The first is always be sure that there is a resistor connected, as
shown in Figure 1.3 below. In this experiment the resistors should be rated at
470 ohms, ¼ watt. See Appendix C for additional information.

Secondly, be certain that the polarity of the LED is correct. There is a flat spot
on the side of the LED that should be connected as shown in Figure 1.3. If the
polarity is reversed, the LED will not work. The flat side also has the shortest LED
lead.

When inserting an LED into the breadboard, bend the leads at right angles a short distance from the body,
because some LEDs do not hold up well to stress on the plastic.

Understanding the Breadboard

The BASIC Stamp has a total of 24 pins, as shown in Figure 1.1. Some of these signals are used to connect the
BASIC Stamp to the PC & the 9 volt battery (or wall pack). Sixteen of these signals (P0 through P15) are
available for us to connect to the “real world”.

On the Board of Education, you can follow a “trace” from the BASIC Stamp module to the line sockets on the
left of the breadboard. Each BASIC Stamp I/O pin is brought to the edge of the breadboard, and with wires
you can “jumper” from the sockets onto the breadboard.

LED:LED:
Light Emitting Diode. A
special type of semi-
conductor diode, which
when connected to an
electronic circuit (with a
current limiting resistor)
emits visible light. LED’s use
very little power, & are
ideally suited for connecting
to devices such as the
Stamp.

Figure 1.3: LED on Breadboard
Shows LED and resistor “plugged” into
breadboard. No connections have been
made yet to the BASIC Stamp’s I/Os

Experiment #1: “What’s a Microcontroller?”

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 9

It’s important to understand how a breadboard works. The breadboard has
many metal strips which run underneath in rows. These strips connect the
sockets to each other. This makes it easy to connect components together to
build an electrical circuit.

To use the breadboard, the legs of the LED and resistor will be placed in the
sockets. These sockets are made so that they will hold the component in place.
Each hole is connected to one of the metal strips running underneath the board.
You can connect different components by plugging them into common nodes.
Figure 1.4 is a small pictorial of this concept.

Each BASIC Stamp pin has a “signal name” associated with it. For example pin #24 is VIN (which stands for
“voltage in”). This is one of the connections for the 9 volt battery. When you plug in the battery, a connection
is made from the battery to this pin via a copper wire that is embedded on the Board of Education.

The pins / signals that we will be working with for this experiment are as follows:

Pin # Signal Name
5 P0
6 P1
21 Vdd (+5 volts)

When we program the BASIC Stamp, we will refer to the Signal Name, rather than the actual pin number.

Connecting an LED:
Never connect an LED to the
Stamp, without having a
resistor (of the proper value)
in the circuit . The resistor
limits the amount of current
flow in the circuit to a safe
level, thereby protecting
both the LED and the Stamp.

Figure 1.4: Breadboard connections
The horizontal black lines show how the
“sockets” are connected underneath the
breadboard. This means you don’t have to
plug two wires into one socket since the
socket to the right or left is connected.

Experiment #1: “What’s a Microcontroller?”

Page 10 • “What’s a Microcontroller?” Student Guide Version 1.4

OK, lets build the circuit! Do not connect the power supply (9 volt battery or
wall transformer) yet.

Figures 1.5 & 1.6 are two different methods to show an electrical diagram.
Figure 1.5 is a “schematic” diagram of the circuit. Figure 1.6 is the same
circuit, but drawn as a pictorial to show what the circuit physically looks like.
In each experiment you will be shown a schematic and a pictorial until we
progress to more advanced lessons.

Connect the first LED:

1. Plug a wire into P0 and then into the breadboard as shown. Then plug a resistor into the breadboard
adjacent to the wire, and plug the other end of the resistor into the other side of the breadboard.

2. Plug the LED in the breadboard adjacent to the resistor. Make sure that the lead next to the flat side of
the LED connects to the resistor.

3. Plug the remaining lead on the LED to Vdd (+5v) on the Board of Education.

Schematic:
An electrical diagram
showing connections
between components, but
not necessarily looking like
the physical circuit. We use
schematic diagrams, because
they help in understanding
signal flow through complex
circuits.

Figure 1.6: Pictorial
What the circuit
physically looks like after
you build it. The flat side
of the LED is closest to
the resistor.

Figure 1.5: Schematic
Experiment #1’s electrical
diagram.

Experiment #1: “What’s a Microcontroller?”

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 11

Program It!

Connect the second LED:

1. Plug a wire into the the P1 position and connect it on the breadboard. Then plug a resistor into the
breadboard adjacent to the wire, and plug the other end of the resistor into the right side of the
breadboard.

2. Plug the LED into the breadboard adjacent to the resistor. Make sure that the lead next to the flat side of
the LED connects to the resistor.

3. Connect the remaining lead from the LED to Vdd (+5v) of the Board of Education, using a connecting wire.

Connect the Board of Education to the PC:

1. Plug one end of the programming cable into the Board of
Education.
2. Plug the other end of the programming cable into an available
serial port connector on the PC.

That does it! We’ve just created a “hardware” circuit. But it doesn’t do anything
yet. That’s why we need to…

How many of you already know how to write a computer program? If you’ve
done it before, then the first part of this section may be review. But if you’re a
“newbie”, don’t worry! It’s really not that hard.

A computer program is nothing more than a list of instructions that a computer
(or in our case, a microcontroller) executes. We create a program for the
microcontroller by typing it into a PC (utilizing the keyboard & monitor), then we
send this “code” through the programming cable, to the microcontroller. This
program (or list of instructions) then runs or “executes” inside the BASIC Stamp.

If we’ve written the program correctly, it will do what we want it to do.
However, if we make a mistake, then the device won’t work (or works poorly),
and we need to “debug it”. Debugging can be one of the most hair-pulling
experiences in the entire process, therefore, the more careful you are in
creating the program, theoretically the easier it’ll be to debug. A software “bug”
is an error in your program. Therefore, debugging is the art of “bug” removal!

PBASIC for the BASIC Stamp has a bunch of commands to choose from; 36 to be
exact. A complete listing & description on each of these commands can be
obtained from the Basic Stamp Manual Version 1.9, but each command used in

Program:
A sequence of instructions
that are executed by a
computer or microcontroller
in a specific sequence to
carry out a task. Programs
are written in different types
of “languages”, such as
Fortran, “C”, or BASIC.

“
Bug:

An error in your program or
hardware. To “debug” your
program, is to track down &
eliminate errors in your
code. There may also be
hardware errors such as
reversing an LED that causes
the system not to function.

Experiment #1: “What’s a Microcontroller?”

Page 12 • “What’s a Microcontroller?” Student Guide Version 1.4

these lessons is further described in Appendix B, PBASIC Quick Reference.

For the purposes of this experiment we’re going to look at only four commands.

These are: OUTPUT, PAUSE, GOTO, & OUT.

As mentioned above, a program is a list of instructions that are executed in a sequence determined by the
structure of the program itself. Therefore, as we write a program, it is very important to keep in mind the
sequence of execution that we desire.

For example, if we want to buy a soda from a vending machine, our brain executes a list of commands to
accomplish this. Perhaps something like…

1. Insert $1.00 into slot.
2. Wait for green light to come on.
3. Push button for soda type.
4. Watch soda fall into tray.
5. Pick up soda from tray.
6. Open soda.
7. Drink soda.
8. Burp.

Now, that seems pretty straightforward, but only because we’ve done it before.

If however, your brain was sending out the following “program”:

1. Push button for soda type.
2. Open soda.
3. Insert $1.00 into slot.
4. Pick up soda from tray.
5. Burp
6. Drink soda.
7. Wait for green light to come on.
8. Watch soda fall into tray.

Not much would happen. All the proper commands are there, but they’re in the wrong order. Once you’ve
pushed the button for “soda type” (step #1), your brain (program) would “hang” or stall because it can’t
execute “open soda”, because there’s no soda to open!

Experiment #1: “What’s a Microcontroller?”

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 13

This is a “bug”. We humans can modify our brain “program” as the situation is happening, and we can of
course ultimately figure out how to get that soda.

Microcontrollers, however, don’t have the capacity to “adapt” and modify their own set of instructions –
they’re only able to execute the exact sequence of instructions that we give them.

Ok, enough background, let’s program this microcontroller to do something!

Connect the 9 volt battery or wall pack to the Board of Education. Connect the serial cable to your PC. Plug
the BASIC Stamp II into the Board of Education, with the big chip towards the bottom of the board.

Turn on your PC. BASIC Stamp software runs in DOS and Windows 95/98/NT4.0. We’ll assume that you’re using
a computer with Windows 95. You first need to copy the contents of the disk onto your PC desktop, or into a
folder.

Double click on the BASIC Stamp icon.

You should now be running a program called the “Stamp Editor”. This is a
program that was created to help you write and download programs to the
BASIC Stamp microcontroller. The screen will look something like Figure 1.7:

The screen, except for a few words across the top, is blank. This is where you
will create your programs. Now remember, we are going to write our program
utilizing the “human interface” equipment (monitor, keyboard, etc.) that is part
of your PC. The program that we will write will not run on the PC, but rather will

The Stamp Editor:
If you are using the DOS
version, pressing the “F1” key
will first show you how many
variables you have used.
Pressing the spacebar moves
between (1) variable, (2)
overall program memory,
and (3) detailed program
memory. To find out how big
your program is, simply hold
down the ALT key & press
“m”.

Download:
After a microcontroller
program has been created
on the PC, it is sent from the
PC down a cable, & loaded
into the micro-controller’s
memory. The program is
then executed from within
the Stamp.

Figure 1.7: BASIC
Stamp Software
Double-click on the
BASIC Stamp icon to
run the software. The
opening screen will
look like this.

Experiment #1: “What’s a Microcontroller?”

Page 14 • “What’s a Microcontroller?” Student Guide Version 1.4

be “downloaded” or sent to the microcontroller. Once the program has been received, the BASIC Stamp will
execute the instructions exactly as we’ve created them.

Type the following program into the BASIC Stamp editor so it looks like Figure 1.8:

output 0
reblink:
 out0 = 0
pause 1000
 out0 = 1
 pause 1000
goto reblink

Now while holding the “ALT” key down, type
the letter “R” (for “run”) and then press
“ENTER” when the menu shows the RUN
command. If everything went well, the LED
that is connected to P0 (pin #5 on the Board
of Education) should be blinking on and off.

If you get a message that says, “Hardware not found”, re-check the cable connections between the PC and
Board of Education, & also make sure that a power supply is connected to the Board of Education. If it still
does not work, check under the EDIT menu, PREFERENCES option, and EDITOR OPERATION tab. The default
COM port setting should be AUTO.

Try downloading again (hold down the ALT key, & then press “r”). If it still doesn’t work, you may have a bug!
Re-check your program to be certain you’ve typed it correctly.

If after trying this, you’re still having problems, ask you instructor for help.

Now lets dissect, & look at our program:

The first command used is “output”. Each signal (P0 & P15) can be setup as an “input” or an “output”. Since
we want the microcontroller to “turn on and off” an LED, the microcontroller is manipulating the “real world”.
Therefore, by definition, we want P0 to be an “output”.

Result of the first command: “output 0” makes P0 an output. (Hint: If we had wanted to make P1 an output,
the command would have been “output 1”).

Figure 1.8: BASIC
Stamp Software
Type the code into
the editor so it looks
like this screen.

Experiment #1: “What’s a Microcontroller?”

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 15

Out:
Technically speaking, “Out”
isn’t really a command, it’s a
”register”. We use the “out
register” to make an output
either high or low. In a future
experiment, we’ll explore
registers in greater detail.

The next item in the program “reblink::”, isn’t really a command. It’s just a label, or a marker for a certain
point in the program. We’ll get back to this in a moment.

Now, pin #5 or P0 as we call it, is an output. In the world of computers, voltages on these pins can be either
“high” or “low”, meaning a high voltage or a low voltage. Another way to refer to high & low is “1 & 0”. “1”
being high & “0” being low.

Think of a light switch on the wall, when the switch is in one position the lamp
is on, & when it is in the other position, the lamp is off. It’s binary – there are
only two possible combinations, on or off, “1” or “0”. No matter how hard you
try, you can never put the light switch “in between” on and off positions.

If we want to turn the LED on, we need to cause P0 to go low (or become a 0).
P0 is acting as a switch that can be “flipped” on or off, under program control!
Simplified circuits are shown in Figure 9 (LED off) and Figure 10 (LED on).
Current flow is from +voltage through the resistor, LED, and into P0, where P0
is “connected “ to ground.

This is the purpose for the second command: “Out0=0”. This will cause P0 to go “low”, which causes the LED
to turn on.

Keep in mind that microcontrollers execute their programs very quickly. In fact, the BASIC Stamp will execute
about 4000 instructions per second.

Figure 1.9: LED off
When P0 is “high”
there is no current
flow

Figure 1.10: LED on
When P0 is “low” and
current flows, the LED
is on.

Experiment #1: “What’s a Microcontroller?”

Page 16 • “What’s a Microcontroller?” Student Guide Version 1.4

If we were to turn the LED off with the next command, it would happen too quickly for us to see. Therefore,
we need to “slow” the program down, so that we can see whether or not it’s operating properly.

That’s the purpose of the next command: “Pause 1000”. This command causes the program to wait for 1000
milliseconds, or 1 second.

The next command is ”out0=1”. This command causes the P0 to go high, and turn the LED “off” because there
is no current flow.

Next we “pause 1000” (for another second). The LED is still “off”.

“Goto”” is pretty much self-explanatory. During the course of program
execution, when the “goto” command is encountered, the program “goes to”
some other point in the program. In our example, we tell the program to “goto
reblink”. Wherever “reblink” is, is where the program will “jump to”.

In our program, the label “reblink” is on the second line. Therefore when the
instruction “goto reblink” is reached, the program jumps back to the second
line, & “loops” or does it again. (Hint: The program loops over & over each
time it encounters the “goto reblink” command. This is what causes the LED’s
to continuously flash on and off).

A good habit to establish is to “remarkremark” your programs. Remarking or
documenting your programs makes them easier to follow & debug if there’s a
problem.

The apostrophe (‘) is used to tell the microcontroller to “disregard the following information”, it’s only for
human benefit. In other words, anything in a program line written after an apostrophe is not part of the
instruction “code”.

So, our program could be “remarked” like this:

output 0 ’make PO an output
reblink: ‘ this is where the loop begins
 out0 = 0 ‘ turn on the LED
 pause 1000 ‘ wait for 1 second, with the LED on
 out0 = 1 ‘ now turn off the LED
 pause 1000 ‘ leave the LED off for 1 second
goto reblink ‘ go back, and blink the LED again

Remark:
“Remarks” in your program
are not executed like
commands. They are
ignored by the micro-
controller. The purpose of a
remark is to allow us humans
to more easily understand
what the commands in the
program are doing.

Experiment #1: “What’s a Microcontroller?”

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 17

The program will still operate exactly the same way, the “remarks” after the apostrophes are only for our
benefit in understanding what we’ve created.

Note that throughout this experiment we have used the “PAUSE” command to wait for x milliseconds. Keep in
mind that instructions also require execution time. For example, the setup time for LOW, HIGH, and PAUSE
commands are about 0.15 milliseconds each. On average the BASIC Stamp executes 4,000 instructions per
second.

A Simpler Way

Remember that each of the pins on the Stamp (P0-P15) can be configured as an input or an output. In order to make the pin an
output, we use the command: “OUTPUT”. Once the pin is an output, we can make it go “low” (a logic level 0) or “high” (a logic level
1), with the OUT0=0 statement (for low) or OUT0=1 (for high). Using these commands, it takes two lines in our program to make
the pin an output & then make it go high or low.

PBASIC has made it even simpler to do this. If you wish to make P0 an output and high (at the same time), simply use the
command: HIGH 0; & conversely, to make P0 an output and low (at the same time) use: LOW 0.

Our example program now would look like this:

reblink:
 low 0
 pause 1000
 high 0
 pause 1000
goto reblink

The program functions exactly the same, it’s just that the new commands not only cause the pin to go high or low (like “OUT0=0” &
“OUT 1=1”) but they also cause the pin to become an output. In simple cases (like this program), either method will suffice, but in
more complicated programming, one method may be more appropritate than the other. We’ll explore this in a future lesson.

Experiment #1: “What’s a Microcontroller?”

Page 18 • “What’s a Microcontroller?” Student Guide Version 1.4

Questions

1. How does a microcontroller differ from a computer?

2. What is the difference between hardware & software?

3. Why is a microcontroller like your brain?

4. What does “debug” mean?

5. The following program should turn on the LED on P0 for 2 seconds, then off for 2 seconds, & then repeat.
How many “bugs” are in the program, & what corrections are needed?

output 0
reblenk:
out0 = 0
pause 200
out1 = 1
pause 2000
goto reblink

Experiment #1: “What’s a Microcontroller?”

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 19

Challenge! Rewrite the program in Question #5 above to do the following. Each
program should be loaded into the BASIC Stamp and tested.

1. Blink both LED’s on and off at the same time. When you’ve finished, enter the program into the PC (just
like you did before), & try it.

2. Alternately blink the LED’s on and off. In other words, while one LED is on, the other is off, and vice versa
– just like a railroad-crossing signal.

3. Turn on the first LED on for 2 seconds, then off. Wait 5 seconds, & then turn on the second LED for 1
second & then off. Wait 3 seconds, then repeat.

4. Turn on the first LED for 1.5 seconds, then off. Wait 2 seconds, & then turn on the second LED for 1.5
seconds & then off. Wait for 2 seconds. Then blink both LED’s on for ½ second and off for 2 seconds.
Recycle & repeat this ½ on, 2 second off blinking.

Experiment #1: “What’s a Microcontroller?”

Page 20 • “What’s a Microcontroller?” Student Guide Version 1.4

What have I
learned? On the lines below, insert the appropriate words from the list on the

left.

___________________ are all around us. Even when they don’t look like a
computer. (Who would have ever thought that a kid’s toy would have a computer
embedded inside of it?)

Microcontrollers consist of hardware & _____________ software. We create
programs on a PC, a computer that is designed for human interaction (with a
keyboard, monitor, etc.) & then _____________ the program to a
microcontroller, where it is actually ________________ (“run”).

A microcontroller program is only as smart as the programmer. Unlike the human
brain, the microcontroller program will not __________ itself, & change the order
of program instructions. The microcontroller will execute a set of instructions in
the exact ____________ in which they were created.

Many microcontrollers are versatile and easy to use, because they may be re-
usable, ______________, and can be designed into an unlimited number of
products and innovations, from robots to toasters.

embedded

executed

microcontrollers

adapt

programmable

sequence

download

Experiment #1: “What’s a Microcontroller?”

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 21

How can I
apply this?

Why did I
learn it?

The real versatility of microcontrollers is that they can be programmed
to control just about anything the human mind can conceive. Model
airplanes, “smart home” controllers, or battery operated remote
weather data collection systems, are just a few examples.

Microcontrollers must have two components brought together, in order for the device to work. The first
component is hardware. Many people make their living designing microcontroller hardware for an infinite
variety of products. The second component is software. Programmers specialize in writing “control code” for
cell phones, pagers, toys, or even industrial equipment.

The neat part about microcontrollers (and something you may consider
as a future career), is that the world of “smart devices” is expanding at
an incredible rate, and doesn’t show any sign of slowing down. As
technology advances in all areas of our lives, we’re surrounded by an
ever-increasing number of technologically advanced machines and
gadgets. You can help develop these, and perhaps invent the next
“great product”, or just have fun, building “stuff”. The technology is the
same, it’s just applied differently!

Look around you and think about how you could use a microcontroller to create a flasher for your bicycle
taillights, running lights for a truck, or an art project which uses some lights to interact with viewers.

Brainstorm with your friends, develop a nifty product and start a business…

…Who knows?

Experiment #2: Detecting the Outside World

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 23

Experiment #2:
Detecting the
Outside World

Parts Required

Making Decisions. Our brain does it all the time. We make
decisions based on what we see, hear, touch, etc. As we learned
in Experiment #1 (What’s a Microcontroller?), microcontrollers
act like our brain – they manipulate the “real world” based on
“inputs”.

Experiment #2 will focus on how we can design a microcontroller system that can change its “outputs”,
depending on what kind of digital “inputs” it detects.

Microcontrollers are programmable devices. That is, they contain a certain list of instructions (called a
“program” or code), that tells it what to do, given certain circumstances.

The BASIC Stamp is programmable in BASIC, a computer language that is easy to learn, & yet has some very
powerful features. Let’s explore how we can make microcontrollers react to, and control the “real world”.

Experiment #2 requires the following parts:

(1) Programming Cable
(2) LED’s (light emitting diodes)
(2) Push button switches
(1) BASIC Stamp II
(1) “Board of Education”
(2) 470 ohm, ¼ watt resistors (yellow, violet, brown)
(2) 10k ohm, ¼ watt resistors (brown, black, orange)
(1) 9 volt battery or wall transformer
(6) Connecting wires
(1) BASIC Stamp Editor program, either the DOS or Win95 version

There are an infinite variety of sensors that we can connect to the BASIC
Stamp. This experiment will include a push button switch (a type of sensor) and
an LED (an output device).Sensor:Sensor:

A sensor is an input device
used to detect or measure
physical presence. Examples
include sensors that detect
light, heat, temperature,
stress, and chemicals (such
as carbon monoxide).

Experiment #2: Detecting the Outside World

Page 24 • “What’s a Microcontroller?” Student Guide Version 1.4

Build It! Using the Board of Education shown in Figure 2.1, build the circuit as
shown in Figures 2.2 and 2.3. Figure 2.2 is the pictorial (what the circuit
physically looks like), and Figure 2.3 is the schematic representation of the
same circuit. Some of this will be familiar from Experiment #1.

Remember that the LED has to be connected with the flat side connected to the P0 and P1 output pins. Be
sure that there is a 470 ohm resistor in series with each LED, & that there is a 10,000 ohm resistor connected
to the “high side” of each push button switch.

Figure 2.1: Board of
Education
Construction
platform for
Experiment 2.

Figure 2.2:
Pictorial
What the
circuit should
look like after
you build it.
The flat side of
the LED is
nearest the
BASIC Stamp
I/O pin.

Figure 2.3:
Schematic
Electrical
drawing of
circuit.

Experiment #2: Detecting the Outside World

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 25

Program It!

Since this experiment uses two different values of resistors, & they look the same, how can you tell them
apart? By reading the color-coded bands. If you don’t know how to read the “code”, jump to Appendix C to
find out how.

This circuit has one type of sensor (the push button switch) and one
type of output device (the LED).

Once you have all the components installed into the prototype area, as
shown in the figures, attach the programming cable from the Board of
Education to your PC & connect a power supply.

Start the BASIC Stamp II Windows Editor by clicking on the icon.

As we learned in Experiment #1, the screen, except for a few words across the top, is blank. This is where we
will write our control programs.

Also recall that the program that we will write will not run on the PC, but rather will be “downloaded” or sent
to the microcontroller. Once the program has been received, the BASIC Stamp will execute the instructions
exactly as we’ve created them.

Type in the following program:

output 0
out0=1
Input 2
recheck:
 if in2=0 then blink
 goto recheck
blink:
 low 0
 pause 200
 high 0
 pause 200
 goto recheck

Now while holding the “ALT” key down, type the letter “r” (for “run”).

Experiment #2: Detecting the Outside World

Page 26 • “What’s a Microcontroller?” Student Guide Version 1.4

If the program does not download properly and you get a message saying “error” you may have a bug. If you
get a message saying “hardware not found” check the cable connection between the Board of Education and
the PC. The BASIC Stamp II Windows program will help you find bugs. If it finds one it will tell you during
download, but you can also press ALT-M to find syntax and typos.

Try downloading again (hold down the ALT key, & then press “r”). If it still doesn’t work, you may have a bug!
Re-check your program to be certain you’ve typed it correctly.

If after trying this, you’re still having problems, ask you instructor for help.

If your program is working properly, the LED should blink on and off only while you’re pushing the switch.

Now lets dissect, & look at our program:

Our first command, output 0, makes the P0 pin an “output”.

The instruction Out0=1, actually sets the output register of P0 to a value equal
to “1”, or “high”. Since the LED is connected to Vdd (high) and the P0 pin is also
set to “high” there is no current flow, therefore the LED is off.

“Input 2” tells the BASIC Stamp that P2 should be configured as input.

Recall from Experiment #1 that a command like “recheck:” really isn’t a
command, it’s a “label” – simply a marker or pointer to a certain point in our
program. When our program eventually reaches the command “goto
recheck”, it (the program) looks for the label “recheck”, jumps to it, & then
continues execution from that point on.

The command “if in2=0 then blink” instructs the microcontroller to “check the
status of (the pin called) “P1”. When a microcontroller “checks the status” of a
particular pin, what it is really doing is reading the digital value of that pin.

The electronics field is generally divided into two different “signal type”
domains – Digital & Analog. Our switch input is either a “0” or a “1” (open or

closed). This is a digital type of sensor. Measuring the level of a swimming pool and a dimmer light switch are
examples of an analog input. Sensors for this type of application convert a measurement, for example, of 4.3”
to a digital value that a microcontroller can understand. We’ll explore this fascinating world of Analog to
Digital Conversion in an upcoming experiment.

Input:
Technically, we don’t really
have to give the BASIC
Stamp this command,
because “at power-up”
(when you first apply power
or push the reset button),
every pin is automatically
configured to be an input.
However, as you develop
increasingly complex
circuitry, it is possible to
change the status of pins
from an input to an output,
and vice-versa, all under
program control. We’re
including this command to
help clarify the difference
between input & output.

Experiment #2: Detecting the Outside World

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 27

In digital (binary) electronics, any value other than 0 or 1 is
considered to be invalid. Therefore, when the microcontroller
“reads” the status on P1, it will see a value of either 0 or 1. We’re
looking for P1 to be a “0”. If (when the microcontroller checks it) it’s
a “1” then this command will do nothing, and the program will
continue executing the next command (in this case, “goto recheck” –
which causes the program to loop back & continually look for P1 to
become a “0”). Once P1 becomes a “0” then the conditions for this
command are met & the program jumps to “blink” (a label defining
the location of another “routine”).

The “blink:” routine should look familiar to you. It is simply a short
program that causes the LED to turn on (for .2 seconds) and then
turn off (for .2 seconds). After blinking the LED, the command “goto
recheck” causes the program to go back and check the status of P1
again, & “do it again”.

Our program with remarks, now looks like this:

output 0 ‘make P0 an output
out0=1 ‘make P0 “high”
Input 2
recheck: ‘a label
if in2=0 then blink ‘check to see if P2 is a “0”, if it is ‘then go an blink the LED
goto recheck ‘if P2 was a “1”, then go back & ‘check again

blink: ‘a label
low 0 ‘turn on the LED
pause 200 ‘wait .2 seconds
high 0 ‘turn off the LED
pause 200 ‘wait .2 seconds
goto recheck ‘loop back & do it again

Let’s write a new program. Type the following into the BASIC Stamp Editor:

output 0
output 1
Input 2

Analog:
A continuously variable value. In stead of
either 1 or 0 (+5 or ground), analog values
can be anywhere in between two
extremes. Since microcontrollers only
understand inputs if they’re digital values,
our sensors and associated “interface”
circuitry need to convert analog values
(voltages) to digital equivalents.

Binary:
The number system used by all
microcontrollers (as well as full-fledged
computer systems). We normally use the
10 digits (0-9). Digital electronic systems
only work (on the very lowest levels) with
two digits, 0 & 1.

Experiment #2: Detecting the Outside World

Page 28 • “What’s a Microcontroller?” Student Guide Version 1.4

Input 3
out0=1
out1=1
recheck:
if in2=0 then blink
if in3=0 then double_blink
goto recheck
blink:
low 0
pause 200
high 0
pause 200
goto recheck

double_blink:
low 0
low 1
pause 200
high 0
high 1
pause 200
goto recheck

Before you run this program, can you tell what it’s going to do?

The program is going to “make a decision”, based on which button is pressed. Once either button is pressed,
the program will jump to the appropriate routine. The microcontroller is sensing an input, making a decision,
and then creating an output. The decision (should I flash one LED or two), is made based on which button is
pressed.

The command “if in2=0 then blink”, looks directly at the pin & then makes a decision based on the status of
that pin. The command “if in3=0 then double_blink” checks the other button. What happens if both buttons
are pushed? Why?

There may be times when we need to get the status of an input (high or low) & then continue executing the
program without making a decision just yet. Maybe several different inputs need to be in a certain state,
before an action should occur.

Experiment #2: Detecting the Outside World

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 29

If we wish to have an LED blink only when both buttons are pushed, our current program won’t work quite the
way we’d like.

A variable allows us to store a certain piece of information (collected now), for later analysis.

Variables must be “declared” before using them in a
program. Declaring a variable is simply a statement in your
program that tells the microcontroller the name of the
variable and how big it is.

Let’s modify our program to demonstrate one way in which
a variable can be used. Type in the following program:

x var bit
y var bit

output 0
output 1

out0=1
out1=1
Input 2
Input 3

get_status:
x=in2
y=in3

if x+y=0 then double_blink
goto get_status

double_blink:
low 0
low 1
pause 200
high 0
high 1

Variable::
A variable is a symbol that contains a certain value.
That value can be changed under program control,
and therefore the variable’s value may change, but
the symbol name doesn’t. Variables can store
certain pieces of information now, for use at a later
time in the program.

Experiment #2: Detecting the Outside World

Page 30 • “What’s a Microcontroller?” Student Guide Version 1.4

pause 200
goto get_status

The first lines, “x var bit”, tells the microcontroller that we’re going to use a variable called x, & it will be a bit
in size. Since we’re only interested in what the state of the pin is (“0” or “1”), a single bit is all we need for the
variable length. In the second line, the same goes for “y”.

In the “get_status:” routine, two things happen. In “x=in2” the microcontroller will look at the input on P2,
then (unlike our previous program), will not jump to another location but rather it will store the value (again
“0” or “1”) in our variable called “x”. The program does the same for “y” in the next line.

Now, at this point in program execution (after pins P2 & P3 are read), it doesn’t matter what happens to the
P2 & P3 inputs, the values that they were when read, are stored as variables x & y.

We can now perform some “operations” on these variables. For example, in our program we’re adding the
value of “x” plus the value of “y” together. If the answer is zero, then our program will jump to the label in our
program called “double_blink”. Therefore, both buttons need to be pushed in order for the double_blink
routine to be called.

Variables don’t have to be single characters. In our sample program, we’re simply using the letters “x” & “y”.

Try this: Use different names for x & y, maybe “Bonnie” & “Clyde”. When you create more complicated
programs, giving a variable a name that means something to you can help in understanding how your program
is operating (especially if you need to debug it!).

More about Variables

In PBASIC, variable names can be up to 32 characters in length. The length of the name has no bearing on the execution speed
of the program. For example, the statement: x = in6, will have the same execution speed as: this_is_a_very_long_name = in6.

Variables can be declared in 4 different sizes: bit (1 bit), nib (nibble - 4 bits), byte (8 bits), & word (16 bits)

You should always declare your variables in the smallest size that is appropriate for the data it will contain. The Stamp2 has a
limit of 208 bits of variable “storage”. These are arranged into 13 words (consisting of 16 bits each). These bits can be used in
any combination of the above sizes. For example, your program could have 10 word variables (160 bits), 10 nibble variables (40
bits), & 8 bit variables (8 bits), or any other combination so long as the total doesn’t exceed 208 bits.

See the BASIC Stamp Manual Version 1.9 for additional information about using variables efficiently.

Experiment #2: Detecting the Outside World

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 31

Questions

1. How does a microcontroller make a decision?

2. What’s a sensor & why does a microcontroller need one? Name some different types of sensors.

3. Define a variable, & describe how they might be used in a program.

4. Write the code to declare a variable called “status”. The variable could be either “0” or a “1”.

5. Add appropriate remarks to the following program:

output 0 ___________________________________
output 1 ___________________________________
out0=1 ___________________________________
out1=1 ___________________________________
recheck: ___________________________________
 if in2=0 then blink ___________________________________
 if in3=0 then double_blink ___________________________________
 goto recheck ___________________________________
blink: ___________________________________
 low 0 ___________________________________
 pause 200 ___________________________________
 high 0 ___________________________________
 pause 200 ___________________________________
 goto recheck ___________________________________
double_blink: ___________________________________
 low 0 ___________________________________
 low 1 ___________________________________
 pause 200 ___________________________________
 high 0 ___________________________________

Experiment #2: Detecting the Outside World

Page 32 • “What’s a Microcontroller?” Student Guide Version 1.4

Challenge!

 high 1 ___________________________________
 pause 200 ___________________________________
 goto recheck ___________________________________

1. Write a program (complete with remarks) that will blink LED P0 on and off (every ½ second), as long
as switch P2 is pressed. When the button is not pressed, LED P1 is on, but goes off when LED P0 is
flashing.

2. Write a program that will blink both LED’s (every 1.2 seconds) when either switch is pressed. If no
switches are pressed the LED’s are on & if both switches are pressed both LED’s are off.

3. Write a program that will alternately blink the LED’s on and off (continuously) every ½ second, but
only after switch P2 has been pressed first (and released) , and then switch P3 is pressed. Then, note
(remark) in your program, what would change if you wish to reverse the “switch press” order.

4. Write a program that will blink the LED’s (every .2 seconds) whenever switch P2 is pressed. Then
while switch P2 is still depressed, LED P1 is turned off when switch P3 is pressed – but LED P0 is still
blinking.

Experiment #2: Detecting the Outside World

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 33

What have I
learned?

On the lines below, insert the appropriate words from the list on the left.

Microcontrollers need ______________ in order to know what is going on in the
“real world”. By using PBASIC commands such as _____________”, our
program can determine what kind of output is appropriate.

There are an infinite variety of sensors that can be interfaced to the BASIC
Stamp. Although the switches that we used in this experiment were
____________________________by us pushing them, they could just as easily have been the
switch sensors on an elevator door – the ones that keep you from getting
squished as the door closes.

______________________________ are used to hold information, enabling our program to
gather data now (perhaps from several different inputs), and then to make
decisions at a more appropriate time

Variables can be __________________________, or “set up”, in 4 different sizes. If we
wish to check the status (high or low) of a particular __________________, then we
can set the variable up as a single “bit”.

Variables can be up to 32 characters in length. The important thing to
remember when using variables, is to give them a name that means
something to you. The length of the name will have no influence on how
quickly your __________________ executes, but a “very descriptive” name will make it
much easier to ____________ your program, should the need arise.

I/O pin

declared

inputs (or sensors)

if in1=0

program

activated

debug

variables

Experiment #2: Detecting the Outside World

Page 34 • “What’s a Microcontroller?” Student Guide Version 1.4

Why did I
learn it?

How can I
apply this?

The very heart of microcontrollers is their ability to make decisions
based on inputs. Inputs to a microcontroller have to be in a digital
format, but many types of “real world” situations are analog in nature.

Sensor technology is one of the most challenging areas of electronics.
There are hundreds of different types of sensors on the Space Shuttle
& the satellites that it carries into orbit.

Many people specialize in designing sensors that interface to microcontrollers. If you like to work on
“hardware”, instead of writing programs (creating software), this could be a very exciting and ever challenging
field.

Any microcontroller (or for that matter, computer) system relies on digital inputs, in order to make correct
decisions. It is important to realize that microcontroller decisions are only as good as the program that it’s
running & the quality of the sensory inputs it gets.

The more you look around, the more applications you’ll see for microcontroller & sensor technology.

Many retail stores have some sort of “door beeper” that chimes
every time somebody goes in or out of the door. Every time the
beeper goes off, the proprietor has to look and see who came in.

Using a proximity sensor that detects the presence of an object (similar to a button being pushed), you could
detect when somebody goes through the door. By using three sensors you could determine which direction
they are travelling. Then, using a another tone, the system could alert you differently when somebody was only
leaving.

Experiment #3: Micro-controlled Movement

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 35

Experiment #3:
Micro-controlled
Movement

So we’re already on Experiment #3 & “all we’ve done” is blinked a
few LED’s on and off. Hang in there, something is about to move!

As you know, an LED is an “output” device. A microcontroller can
blink LED’s as well as control all sorts of other (sometimes
movable) output devices under program control.

Although the control methods are very similar, other types of devices such as
motors can give us a much more tangible example of “real world” manipulation.

There are many different types of motors that the BASIC Stamp can control.
Most motors however, require some type of external “interface circuitry”
which enables our microcontroller to control them. In this experiment, we’re
going to use a specialized type of DC motor. It’s called a “servo”.

What’s a servo? A servo is a DC motor which has some “interface circuitry”
already built in. This makes it extremely easy to connect to a microcontroller
(such as the BASIC Stamp). The type of servo that we’ll be using was originally
designed for use in radio-controlled cars, boats, and planes.

Rather that continually rotating, like a standard type of hobby motor, a servo is
“position-able”. You can, by sending the appropriate signals from the BASIC
Stamp, have the servo rotate to a specific point, and stay there.

Servos have many applications, as we’re about to explore.

Interface circuitry:
Microcontrollers operate on
very small voltages & signal
levels. They don’t have
enough “drive” capability to
operate large, heavy duty
types of output devices.

Consider your “Walkman” as
a microcontroller. It can
drive small outputs (like head
phones) by itself but to
control a large device (like
big speakers) you will need
an interface circuit – an
amplifier.

The BASIC Stamp can control
small motors on your table-
top robot, or with the
appropriate interface
circuitry, it can operate the
motors that open the flood
gates on Hoover dam. It all
depends on your “interface
circuitry”.

Experiment #3: Micro-controlled Movement

Page 36 • “What’s a Microcontroller?” Student Guide Version 1.4

Parts Required

Build It!

Experiment #3 requires the following parts:

(1) BASIC Stamp II
(1)“Board of Education”
(1) Three pin “double male” connector
(1) Programming Cable
(1) RC servo
(1) LED (light emitting diode)
(1) 470 ohm, ¼ watt resistor
(1) 3000 microfarad electrolytic capacitor
(1) 9 volt battery or wall transformer
(6) Connecting wires
(1) BASIC Stamp Editor program, either the DOS or Win 95 version

A picture of a typical servo is shown in Figure 3.1. Servos come in many
shapes & sizes, depending on their application.

Using the Board of Education, create the hardware circuit as shown in
the figures below.

Figure 3.2 is the pictorial (what the circuit physically looks like), and Figure 3.3 is
the schematic representation.

Depending on which model of servo you have, the color coding on the wires may
vary. In all cases (with the servos you get from Parallax), the black wire is
connected to Vss and the red wire is connected to Vdd. The remaining (third)
wire may be white or yellow (or something else). This is the control input wire
which we’ll be conneting to the P1 signal on the BASIC Stamp.

Vdd & Vss:
These are the designations
that are used for plus
voltage and ground. In our
circuity (on the Board of
Education) Vdd is equal to +5
volts, & Vss is equal to zero
volts. This is a fairly
common set of values for
most computer systems,
however these values may
vary depending on what
other types of electronic
devices may be in the circuit.

Figure 3.1: Servo
Radio control (R/C) servo

Experiment #3: Micro-controlled Movement

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 37

Capacitor:
A capacitor stores electrical
energy. It is used in our
circuit like a small battery to
deliver extra current
(measured in Amps) required
when the servo motor starts
to turn. The capacitor helps
to deliver this “start up”
power, letting the circuit to
run “smoothly”, minimizing
spikes that may cause our
microcontroller to act
erratically.

Figure 3.2: Pictorial of servo connection:
Note the order which the servo wires plug
into the double-male header, which plugs
into the breadboard.

Figure 3.3: Schematic of servo
connection: Note the order
which the servo wires plug into
the 3-pin header, which plugs into
the breadboard.

Experiment #3: Micro-controlled Movement

Page 38 • “What’s a Microcontroller?” Student Guide Version 1.4

Be sure that there is a 470 ohm resistor in series with the LED. As we learned in a prior experiment, this will
limit the current flowing through the LED to a safe amount. Too much current flowing through the LED will
burn it out and may damage the BASIC Stamp as well.

The capacitor (the cylinder with two wires) has a polarity designation on it as well. It is important that you
connect the minus (-) lead of the capacitor to Vss and the positive (+) lead to Vdd. Reversing this connection
could damage the capacitor. See Figure 3.2.

This circuit has two types of output devices (an LED & the Servo).

Once you have all the components installed into the prototype area, (as shown in the figures), attach the
programming cable from the Board of Education to your PC & connect either a 9 volt battery or a 9 volt DC
wall transformer to the Board. Since the servo requires a lot of current (much more than an LED), battery life
will be quite limited, so use the transformer if you have one.

Program It!

Turn on your PC, & double click on the BASIC Stamp icon.

You should now be running a program called the “BASIC Stamp Editor”. This is a program that was created to
help you write and download programs to the microcontroller.

Type in the following program:

output 5
here:
out5=1
pause 200
out5=0
pause 200
goto here

Now while holding the “ALT” key down, type the letter “r” (for “run”) and press “enter”.

If your program is working properly, the LED should be blinking.

Experiment #3: Micro-controlled Movement

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 39

But we’ve done this before. It’s just a simple LED blinking program, why are we doing it again?

The answer is that we are about to use a more sophisticated PBASIC command,
and this simple blinking routine will help us to understand how the new
command works.

Try changing both “pause” statements to values of only 100 (instead of 200).

Now change the pauses to 50. Now 30. Now 20. Now 5. What’s happening?

The LED is blinking faster & faster because the time of each pause is getting
shorter each time you decrease (the Pause) values. When you reach a certain
blink rate, our eyes see the LED as on all the time. It really isn’t. It’s just
blinking at such a high rate, that our eyes can’t see the individual pulses of light.

Ok, so what? Well, a servo is controlled by a stream of pulses that are between
1 and 2 milliseconds in length. This pulse recurs about every 10 milliseconds.

Recall that the “pause” command is set in milliseconds, and that the smallest
pause length we can have is 1 millisecond. The next (available value) is 2
milliseconds (ms).

A servo, needs to have a stream of pulses (on the white or yellow “control”
wire), that vary between 1 and 2 ms in length. With a stream of pulses that are
a constant 1 ms in length, the servo will be positioned at one extreme of its
rotation. As the pulse width increases (1.1ms, 1.2ms, 1.3ms… etc), the servo
changes its position. When the pulse width reaches 2.0ms the servo is at the
other extreme of its rotation. These pulses need to occur at about 10 ms
intervals. Figure 3.4 is a timing diagram of the pulses needed by the servo.

If you are using the DOS
BASIC Stamp editor and you
get a message that says,
“Hardware not found”, re-
check the cable connections
between the PC and Carrier
Board, & also make sure that
the 9 volt battery (or wall
transformer) is connected &
charged.

 Try downloading again (hold
down the ALT key, & then
press “r”). If it still doesn’t
work, you may have a bug!
Re-check your program to
be certain you’ve typed the
program correctly.

After checking your
connections, press ALT “r”
again. If you still receive the
“hardware not found”
message, then make sure
your computer is running in
DOS, not Win95. If it is
running in Win 95, then press
the Start button (on the
monitor), and select “Restart
in MS-DOS mode”.

If after trying this, you’re still
having problems, ask your
instructor for help.

Figure 3.4: The pulse stream for a typical servo: Timing diagram of
pulses needed by the servo.

Experiment #3: Micro-controlled Movement

Page 40 • “What’s a Microcontroller?” Student Guide Version 1.4

Ok, armed with this information lets write a program that will make the
servo move to one (extreme) position, stay there for a short time & then
move to another position, remain there for a short time, & then repeat.

Type in the following program:

x var word
output 1
here:
for x = 1 to 100
 pulsout 1,500
 pause 10
next
pause 500
for x = 1 to 100
 pulsout 1,1000
 pause 10
next
pause 500
goto here

Now while holding the “ALT” key down, type the letter “r” (for “run”).

If your program is working properly, the servo should be rotating from one
(extreme) end of its rotation to the other, then returning back and doing it
again.

Servos are not designed to fully rotate (like a standard motor that you
might use on a robot’s drive wheels). Instead, they are used for positioning
types of applications. Examples would include opening and closing valves,
or a robotic manipulator arm.

Millisecond:
Computers and micro-controller
systems operate at very fast rates.
As humans we are used to time
measurements in the seconds
range, or in the case of athletic
competition, 10ths or even 100ths
of a second. A millisecond is 1 /
1000 of a second, i.e. there are
1000 milliseconds in one second.
This seems like a very small amount
of time, but it is actually quite long
in the micro-electronic world of
computers. In fact, your personal
computer (that you’re using to
write these PBASIC programs) is
probably operating in the millionths
of a second range!

Timing Diagram:
Computers operate on a series of
pulses, usually between 0 and 5
volts. A timing diagram is simply a
visual way to show what the pulses
look like. You “read” a timing
diagram from left to right - which
is really a duration of time. In our
sample diagram, we see that the
voltage (on our output pin P1)
starts at 0 volts. After a short time
period, we see that P1 pulses high
for a duration of between 1 and 2
milliseconds, at which time it
returns to 0 volts. After
approximately 10 milliseconds, P1
pulses high again. Unless otherwise
noted in the diagram, you can
assume that the process repeats
itself, i.e. when you get to the right
side of the diagram, go back to the
left, & start over again.

Experiment #3: Micro-controlled Movement

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 41

Let’s explore the program:

x var word
Recall that in order for the BASIC Stamp to know what variables are

being used, we need to “declare” them in our program. This command tells the
BASIC Stamp that we will be using a variable called “x”, and that it will be one
“word” in size. A “word” variable 16 bits and can hold a value between 0 and
65,536 in our decimal number system. Because we’re only using “100” as the
maximum value in our program, we could have set this variable up as a byte
variable, using 8 bits and capable of storing a value between 0 and 255
(decimal). The word bit comes from binary digit.

output 1
This we already know – it makes P1 an output.

here:
Simply a label, marking a place in the program.

for x = 1 to 100
For those of you who have written programs in (other types of) BASIC, this command may look

familiar. This is the beginning of a “FOR…NEXT” loop. It simply says that the first time this command line is
encountered, that our variable “x” will be set to the value of “1”. The program goes on to the next command
& continues program execution until it encounters the command called “next”.

Upon reaching “next”, the program loops back up to the “for x = 1 to 100” command, and increments the
value of “x” by one. The program then continues to loop over and over (incrementing “x” each time) until the
value of “x” = 100. When “x” = 100 (i.e. when this part of program has “looped” 100 times) the program will
exit the “loop” and execute the command immediately after “next”.

We are sending a string of 100 pulses to the servo to allow it enough time to mechanically react to the signal
stream. The microcontroller can operate much faster that any “real world” mechanical device, and by looping
100 times, we’re giving the servo enough time to “catch up” to the BASIC Stamp.

Servo Modifications:
Although they’re not
specifically designed for full
rotation, servo’s can be
modified to allow them full
rotary motion. A method for
this modification is outlined
in “Programming &
Customizing the BASIC
Stamp”, by Scott Edwards.
See the Appendix for more
information.

Experiment #3: Micro-controlled Movement

Page 42 • “What’s a Microcontroller?” Student Guide Version 1.4

pulsout 1,500
This is a very handy command in the I/O world. Many times we need to have a very stable output

pulse generated by our microcontroller in order to precisely control hi-tech devices (such as our servo). To
implement what this command does using the techniques that we used to blink the LED really isn’t feasible
because our servo requires pulse widths of between 1 and 2 ms. “Pause” just can’t provide the resolution that
we need – it jumps from 1 to 2 milliseconds. This is the reason we created the LED blinker program earlier.
What took 4 or 5 lines of code (with inadequate resolution) can be accomplished with this single command.
And with a resolution that is measured in microseconds!

“Pulsout 1” does exactly what its name implies. It creates a single pulse output on I/O pin P1. The “500” is a
value that determines the duration of the pulse. As mentioned above, this duration is measured in
microseconds. Pulsout has a resolution of 2 microseconds, therefore a value of 500, would yield a pulse
length of 500 times 2 microseconds, or 1000 microseconds (which equals 1 millisecond – the value required
for the servo). A value of 1000 would create a pulse length of 1000 x 2 microseconds = 2 milliseconds – the
required pulse width for the servo’s other extreme.

pause 10
Nothing new here – we already know what pause does, but the reason that we’re pausing here may

not be readily apparent. The specifications for servo control (at least for the servo’s we’re using in this
experiment) dictate that the stream of pulses going into the servo must be approximately 10 milliseconds
apart. By pausing 10 ms at this point, we’re controlling the flow of pulses to fit the servo’s specifications.
Again, see the timing diagram in Figure 3.4.

next
At this point the program will loop back to the prior “for x = 1 to 100” command and output the next

pulse, unless it’s already looped (in this example) 100 times. If “x” has reached 100 at this stage, the program
will continue execution beyond this command.

pause 500
This command is executed when the (above) For…Next loop has finished. This is just a pause so we

can see the servo stop before it turns again.

for x = 1 to 100
We’re headed into another loop. This one is identical the first loop, with the exception that the

pulsout length is 2 milliseconds. This causes the servo to rotate to its other extreme.

Experiment #3: Micro-controlled Movement

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 43

pulsout 1,1000
Create a single pulse with a duration of 2 milliseconds.

pause 10
Again, we need to wait for 10 milliseconds before continuing in our “loop”.

next
If “x” hasn’t incremented to 100 yet, the program will loop back up to the prior “for x=1 to 100”

command. Note that it will loop back to the “for” command that is immediately prior to this “next” statement.
(NotNot all the way back up the first “for…next” loop).

goto here
Go back up and do it all over again.

Ok, let’s recap what our program is doing.

After initialization, the program will send a stream of 100 pulses, each pulse
being 1 millisecond in length. This will cause the servo to rotate to one extreme
end of its rotation.

Then, the BASIC Stamp will send out another series of 100 pulses (again, utilizing
the “for…next” loop), this time however, the pulse widths are 2 milliseconds in
length. This causes the servo to rotate to it’s other extreme position.

The program loops back and does it all over again.

Now, let’s try something interesting. Since the position of the servo is controlled by the pulse length
(generated by the pulsout command), try changing the first pulsout command to:

pulsout 1,750

What happened & why?

Initialization:
The first part of many
programs is sometimes
referred to as the
“initialization routine”. All
this means is that this
portion of the program “sets
up” all the various
parameters that the
program will be using.

Experiment #3: Micro-controlled Movement

Page 44 • “What’s a Microcontroller?” Student Guide Version 1.4

Recall that to rotate the servo to a particular position, just change the value of the pulse width. By changing
our first width to 750, this yields a pulse width of 750 x 2 microseconds, or 1.5 milliseconds. The servo will
rotate to about the middle of its rotation, & cycle back & forth between the middle and one extreme.

Try different combinations of pulse widths (at both extremes) to rotate the servo to different positions.

Do you understand what we’re doing here? Your program is able to move (or in this case rotate) a mechanical
device, in the real world. If this were a bigger servo, you could use it to move the arm of an industrial robot,
or open the door automatically at the supermarket! Servos like this one are also used to control the eyes and
facial expressions of most “creatures” made by special effects experts for movies.

Experiment #3: Micro-controlled Movement

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 45

QuestionsChallenge!

1. How is a servo different than a motor?

2. What command do we use (in PBASIC) to control a servo’s rotation?

3. Why can’t we use the Pause command to create the pulse lengths necessary to control a servo?

4. Describe the way a “For…Next” loop operates.

5.5. Add appropriate remarks to the following program:

x var word ___________________________________
output 1 ___________________________________
here: ___________________________________
for x = 1 to 100 ___________________________________
pulsout 1,500 ___________________________________
pause 10 ___________________________________
next ___________________________________
for x = 1 to 100 ___________________________________
pulsout 1,1000 ___________________________________
pause 10 ___________________________________
next ___________________________________
goto here ___________________________________

Experiment #3: Micro-controlled Movement

Page 46 • “What’s a Microcontroller?” Student Guide Version 1.4

Challenge!

1. Write a program (complete with remarks) that will turn on the LED (on P5) every time the servo reaches
one extreme of its travel, and then turn the LED off when it reaches the other extreme.

2. Write a program (with remarks) that rotate the servo from one extreme to the other (back & forth), but
stopping for a short “pause” in the middle of its rotation each time.

3. Write a program (with remarks) that will move the servo to one extreme to the midpoint, return back,
then rotate all the way to the other extreme, & then recycle.

4. Write a program that will cause the LED to blink 3 times & then rotate the servo from one extreme to the
other. Pause for a moment & then repeat. This would be like a “warning” indicator that an automatic
piece of machinery was about to start.

Experiment #3: Micro-controlled Movement

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 47

What have I
learned? On the lines below, insert the appropriate words from the list on the

left.

______________________________ are a special type of DC __________________________ which is well suited
for connecting directly to a microcontroller. A servo is designed to react to a
series of __________________________ on its control wire. As the width of these pulses
changes from 1 to 2 ______________________________, the servo’s internal circuitry causes the
motor to rotate to the appropriate position.

We use the __________________________ command to output a specific pulse width for the
control line input of the servo. In our application, we varied the pulse width
between 1 and 2 milliseconds, using the command: Pulsout 1, X; where X is a
__________________________ value between 500 and 1000. Since the pulsout command has a
resolution of 2 microseconds, this gave us a pulse width output of 1000 and 2000
microseconds, respectively.

Servos can be large or small, depending upon the application. The
__________________________circuitry (which is built into the servo housing) eliminates the need
for us to connect many other __________________________components for proper circuit
operation.

A ______________________ loop is a convenient method to loop through a certain portion of
our program for a pre-determined number of ________________________. In our sample
program, we looped 100 times, but this number could have been easily changed to
accommodate other loop lengths, depending on the requirements of the program
and hardware.

cycles

decimal

motor

interface

For…Next

pulsout

servos

pulses

milliseconds

hardware

Experiment #3: Micro-controlled Movement

Page 48 • “What’s a Microcontroller?” Student Guide Version 1.4

Why did I
learn it?

How can I
apply this?

To many of us, having a microcontroller blink on and off an LED might
seem like no big deal, but making a motor or mechanical device move
under program control is where microcontrollers really start to get
interesting.

Although the microcontroller doesn’t know what the output device is (LED or servo), making something move
in the real world gives us a much more tangible example of real world manipulation.

There are microcontrollers (some of them BASIC Stamps!) all around us controlling servos, AC & DC motors,
solenoids & other types of motive devices. These range from the little vibrator device inside your “silent”
pager, to the automatic doors at the supermarket, to the robotic manipulators in use by hobbyists &
professional developers alike.

Although additional interface circuitry is usually required for most
other types of motion devices (for connecting to the BASIC Stamp), the
principles outlined in this experiment use essentially the same control
techniques. Many people make their living designing microcontroller
based systems that mechanically manipulate our world. Even if you

don’t end up doing this type of work as a career, you’ll still have a appreciation for what goes into making your
pager vibrate, or the supermarkets doors open for you automatically.

Now that we know how to control a servo, you could develop a control system for a model plane that would
be similar to an “autopilot” function on a full sized aircraft. If you added a digital altimeter as an “input” to
the BASIC Stamp, then the craft could be flown automatically.

In fact, you could design in some sort of “override” safety system that would allow a novice to fly the plane,
but when he was about to crash into the ground (and destroy the plane!), your autopilot system could “take
over” and prevent the catastrophe!

Experiment #4: Simple Automation

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 49

Experiment #4:
Simple
Automation

In Experiment #3 we used a servo (a specialized type of motor) to
demonstrate how a microcontroller can manipulate a mechanical
device in the “real world”. The program that we wrote (and
downloaded to the BASIC Stamp’s memory) controlled the
rotation & position of the servo.

The program caused the servo to swing back and forth between the servo’s two
different extremes of rotation. This was an example of how a microcontroller
can cause a motive device to operate.

However in Experiment #3, the BASIC Stamp was “blind”. All the servo did was
respond to our code. Remember that the very heart of a microcontroller is its
ability to make decisions based on inputs and then manipulate the “real world”
with outputs.

In this experiment we’re going to do just that. Yes, we’re going to move the
servo again, but only if the proper input conditions are met. You could think of
this experiment as the small equivalent of an automatic door at the
supermarket. The door is closed most of the time until somebody – or
something – comes near, then the door automatically opens. There is
apparently nothing that we need to do in order for the door to open. We’re not
pushing any buttons, just by being near the door is enough to cause it to open.
This is a very basic form of automation.

Some of the sensors that are used for this type of application are quite
sophisticated, and others are quite simple. However, they all have one thing in
common and that is that they sense an input & deliver the signal to a
microcontroller so that it can make a decision, in this case “opening the door”.

As our “detection sensor”, we’re going to use a device called a “photo resistor”.
It’s a device designed to detect different light levels. It’s a type of “optical”
sensor.

Let’s automate! Experiment #4 requires the following parts:

Automation:
In this experiment, the term
automation means that
something is being done,
without any “human
interaction”. In our example
(the supermarket automatic
door), this isn’t exactly true.
Although we’re not physically
pushing any buttons, we are,
by our presence, figuratively
“pushing the light detectors
button”. This however,
appears to be completely
automatic, since we don’t
have to “think” about doing
any thing other than walking
up to the door.

In its truest sense,
automation is the
microcontrollers ability to
make things happen with no
interaction on our part.

Experiment #4: Simple Automation

Page 50 • “What’s a Microcontroller?” Student Guide Version 1.4

Parts Required

Build It!

For this experiment you will need the following:

(1) BASIC Stamp II
(1)“Board of Education”
(1) Three pin connector
(1) Programming Cable
(1) R/C servo
(1) LED
(1) 470 ohm, ¼ watt resistor
(1) 3300 microfarad electrolytic capacitor
(1) Photoresistor, Cadmium Photocell (CdS)
(1) 10K ohm, ¼ watt resistor
(1) 9 volt battery or wall transformer
(misc.) connecting wires
(1) Personal Computer running DOS 2.0 or greater, with an available serial port.
(1) BASIC Stamp Editor program

Using the Board of Education, create the hardware circuit as shown in the
figures below.

Figure 4.1 is the schematic and Figure 4.2 is the pictorial (what the circuit
physically looks like).

Depending on which model of servo you have, the color coding on the wires may vary. In all cases (with the
servos you get from Parallax), the black wire is connected to Vss and the red wire is connected to Vdd. The
remaining (third) wire may be white or yellow (or something else). This is the control input wire which we’ll be
conneting to the P1 signal on the BASIC Stamp.

Experiment #4: Simple Automation

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 51

Figure 4.1: Schematic:
Experiment #4 also uses a
photocell.

Figure 4.2: Physical picture: This is
an addition and small modification
to the hardware used in Experiment
#3.

Experiment #4: Simple Automation

Page 52 • “What’s a Microcontroller?” Student Guide Version 1.4

Program It!

This circuit has two types of output devices (the servo and the LED) and one type of input device (the
photoresistor).

Remember to connect the LED properly!

Once you have all the components installed into the Board of
Education’s prototype area (as shown in Figures 4.1 and 4.2) attach the
programming cable from the Board of Education to your PC & connect
either a 9 volt battery or a 9 volt DC wall transformer to the Board.

Since the servo requires a lot of current (much more than an
LED), battery life will be quite limited, so use the transformer if
you have one.

Turn on your PC, & double click on the BASIC Stamp icon.

You should now be running a program called the “Stamp
Editor”. This is a program that was created to help you write
and download programs to the BASIC Stamp microcontroller.

Type in the following program:

this_place:
high 5
pause 200
low 5
pause 200
goto this_place

Now while holding the “ALT” key down, type the letter “r” (for
“run”) and press “enter”.

Just another blinker program? Well yes and no. Notice that
there is no “output 5” command in the program at all. If you’ve

been reading through the appendices throughout these lessons you’ll discover the the “high” and “low”
commands automatically make the pin an output.

This saves some keystrokes, and more importantly saves program space on the BASIC Stamp. We really don’t
need to worry about running out of program space with our (small) experiment programs, but as you begin to

Program space:
Microcontrollers may have several types
memory which they use to carry out their tasks.
In the case of the BASIC Stamp 2, we’re limited
to 2048 bytes of (EEPROM) memory storage.
This amount of space is used for both program
and data storage. If you write a program that
automatically gathers data over a period of time
(such as a remote weather station), you’ll want
to make your program as small and as efficient
as possible to allow as much room for data
storage as you can.

EEPROM:
This stands for ‘electrically erasable,
programmable, read only memory. Although a
sophisticated development in the "memory
industry”, it’s really quite simple to use. We can
store our programs & data in EEPROM with very
simple commands. Then when the power is
removed, both the program & data is retained.
What sets the EEPROM apart from most other
types of “solid state” memory is that it can be
very easily erased (“automatically”) & re-written
to, again and again.

Experiment #4: Simple Automation

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 53

create larger & more complex programs, it’s a good habit to sharpen your programming skills to turn out
“high quality” programs. Not only will you be less likely to run out of program space, but your code will
actually run faster, resulting in a quicker execution time.

Modify the program to look like this:

n var bit
n=0

this_place:
n=0
low 5
debug ? n
pause 1000
high 5
n=1
debug ? n
pause 1000
goto this_place

Run the program.

Not only should your LED be blinking but you should also have an “information box” on your PC’s monitor,
alternately displaying “n=1” and “n=0”.

Let’s dissect, and see what’s going on…

n var bit
A variable called “n”, one bit in size.

this_place:
A label in the program

n=0
Something new. We’re going to “set the value of ‘n’ to 0”

low 5

Experiment #4: Simple Automation

Page 54 • “What’s a Microcontroller?” Student Guide Version 1.4

Make P5 low, thereby turning on the LED.

debug ? n
Debug? That word sounds familiar. Remember that to “debug” means to remove the errors in your

program. Well, the PBASIC language has a command called “debug”, which can really aid in getting rid of all
those program glitches.

Normally we send the program from our PC down the programming cable to the BASIC Stamp. It’s essentially
been (until now) a one-way trip.

Debug is a very specialized command that allows the BASIC Stamp to send information (“data”) back “up” the
cable, & display it on your PC’s monitor. In this manner we can “look inside the BASIC Stamp” and see the
data that the BASIC Stamp is working with. In this case, we set the value of “n” to 0 in a previous command.
When the debug command is encountered, it “prints” the value of “n” onto the PC’s debug window.

The “?” is an abbreviation for “print”, so the command literally says: “Open the debug window on the PC and
print the value of “n” on the screen”.

pause 1000

Easy by now, right?

high 5
Turn off the LED.

n=1
Here we’re changing the value of “n” to 1.

debug ? n
We’re sending the value of “n” back to the PC. Since the value of “n”

has changed, debug “prints” the change on your PC’s screen.

pause 1000
Yep. We know what this does.

goto this_place
Go do it all over again.

Debug (command):
A very useful tool for
“seeing” what your program
is doing down inside the
Stamp.

The Debug command has a
tremendous amount of
flexibility built in. Check out
the appendix for a complete
description of each of the
available features.

Experiment #4: Simple Automation

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 55

Now some of you may be thinking “Why do we need to see the value of “n” in our
debug window? Since our program (that we wrote) is setting the value of “n”,
we already know what the value of “n” is Why bother displaying it back to us?

That’s true, the value of “n”, in this example is “hard-coded” – the program sets
the value with no variance. However, when a variable is set by external events,
such as when an input changes due to a switch being pushed for example, then
debug allows us to see the changing input data, & then ascertain whether or not
our program is reacting properly.

Let’s try it. Modify the program:

n var bit

this_place:
n=in7
debug ? n
pause 100
goto this_place

Now instead of “hard-coding” the value of “n”, we’re allowing “n” to be equal to the value of whatever “in7” is.
Since P7 is connected to our photo-resistor, when the amount of light that the photo-resistor sees changes,
the input voltage (on P7) also changes.

Move your hand over the photo-resistor (no need to touch, although you won’t hurt it). The debug value on
your PC should be changing from a “1” to a “0”, depending on whether the photo-resistor sees a light or dark
environment.

This part of the circuit is called a resistive divider, & we’ll explore this in greater detail in an upcoming
experiment. Suffice it to say at this point, that as the photo-resistor changes its resistance (due to varying
light levels), the voltage changes on P7. This voltage change is an analog signal. Now, since microcontroller
input pins only recognize binary (digital) values, when the voltage reaches a certain point, the value that P7
sees will be either a “1” (+ 5 volts) or a “0” (0 volts).

What we’ve just done is created a “switch” that doesn’t need to be pushed! It’s a sensor that reacts
automatically to external light levels.

Now let’s do something fun…

Hard-coded:
A value or parameter that is
set absolutely to a specific
value. There are other ways
to set values to a
predetermined value (such
as using the concon command),
that make it easier to change
their value in the future. In
many cases the variables
used in a program are
dynamic in that they
constantly change their value
during program execution.

Experiment #4: Simple Automation

Page 56 • “What’s a Microcontroller?” Student Guide Version 1.4

Change the program to this:

x var word
n var bit
output 1

close_the_door:
for x = 1 to 100
 pulsout 1,500
 pause 10
next
pause 10

look_for_people:
n=in7
if n=1 then open_the_door
pause 100
goto look_for_people

open_the_door:
for x = 1 to 100
 pulsout 1,1000
 pause 10
next
pause 10

n=in7
if n =0 then close_the_door
goto open_the_door

What do you think this program is going to do?

Don’t be discouraged that the program may be getting a little longer. Let’s just break if down into
manageable, byte sized chunks (pun!)

This is the initialization part of the program, we already know what these three commands do.

x var word
n var bit

Experiment #4: Simple Automation

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 57

output 1

We used this routine in Experiment #3. It sends out a series of pulses that makes the servo rotate to one end
of its travel.

close_the_door:
for x = 1 to 100
 pulsout 1,500
 pause 10
next
pause 200

This part of the program simply looks at whether or not the photo-resistor detects a “shadow”, & if it does,
causes the program to go to the routine that will “open the door”.

look_for_people:
n=in7
if n=1 then open_the_door
pause 100
goto look_for_people

If our servo was larger and connected to the supermarket’s front door, this routine would open it.

open_the_door:
for x = 1 to 100
 pulsout 1,1000
 pause 10
next
pause 200

This is for “safety”. As long as the person is standing anywhere near the door, keep the door open. (You don’t
want to crush too many customers, they’ll start shopping somewhere else!)

n=in7
if n =0 then close_the_door
goto open_the_door

Experiment #4: Simple Automation

Page 58 • “What’s a Microcontroller?” Student Guide Version 1.4

Questions

1. What is automation?

2. What does the “debug” command do, & why is it useful?

3. What does the command “n = in7” do? How does the command “is_person_there = in7” differ in
execution?

4. In this experiment, how does the microcontroller know when to “open the door”?

5. Add appropriate remarks to the following program:

x var word ___________________________________
n var bit ___________________________________
output 1 ___________________________________
close_the_door: ___________________________________
for x = 1 to 100 ___________________________________
pulsout 1,500 ___________________________________
pause 10 ___________________________________
next ___________________________________
pause 200 ___________________________________
look_for_people: ___________________________________
n=in7 ___________________________________
if n=1 then open_the_door ___________________________________
pause 100 ___________________________________
goto look_for_people ___________________________________
open_the_door: ___________________________________
for x = 1 to 100 ___________________________________
pulsout 1,1000 ___________________________________
pause 10 ___________________________________

Experiment #4: Simple Automation

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 59

Challenge!

next ___________________________________
pause 200 ___________________________________
n=in7 ___________________________________
if n =0 then close_the_door ___________________________________
goto open_the_door ___________________________________

1. Write a program (complete with remarks) that will turn on the LED (on P5) every time the photo-resistor
is in a shadow.

2. Write a program (with remarks) that will blink the LED twice & then “open the door (rotate the servo),
when the sensor detects a shadow. Then recycle & do it again.

3. Write a program (with remarks) that will blink the LED twice & then “open the door (rotate the servo),
when the sensor detects a shadow. Then while the sensor is still detecting a shadow, blink the LED
continuously, until the shadow goes away. Then recycle & do it again.

4. Write a program that will cause the LED to blink continuously, until a shadow is detected by the photo-
resistor. Once the shadow is detected, the LED is turned on while the “door is being opened”. Once the
door is open, the LED is off, until the shadow goes away. Then recycle & do it again.

5. Think of conditions where the program for this experiment would not work correctly.

Experiment #4: Simple Automation

Page 60 • “What’s a Microcontroller?” Student Guide Version 1.4

What have I
learned?

On the lines below, insert the appropriate words from the list on the left.

______________is a fascinating application for microcontrollers. Without any
intentional ______________by humans, the BASIC Stamp can make things happen
based solely on sensory inputs. The supermarket’s ______________door is a great
example of a typical microcontroller application.

There are many different types of sensors that can detect movement in the “real world”.
In this experiment we used a ______________whose value is dependent upon how
much light it detects. Since this sensor detects light (or its absence), it is sometimes
referred to as an “______________” sensor.

The “Debug” command allows the BASIC Stamp to send ______________back to the
PC, so that we can determine how well our program is operating, and whether or not it’s
making the appropriate “decisions”. In this experiment the BASIC Stamp sent the value
of “n” back to the PC, which was assigned to the value of the ______________ input on
P7.

As we develop larger programs, it becomes increasingly important to write our “code” as
______________ as possible. This is important for several reasons. First, most
microcontrollers (like the BASIC Stamp) have a limited amount of ______________ for
program and data storage. The fewer instructions that we can use to accomplish a given
task, means the more features that we can add to our program. Secondly, fewer
instructions to accomplish a given task allows our program to ______________ faster
– yielding a faster ______________time to “real world” situations. As an example, if
our program was poorly written & the door didn’t open quickly, the customer might walk
right into the door. Not exactly great customer relations!

automatic

photo-resistor

efficiently

automation

response

input

optical

execute

action

data

memory

Experiment #4: Simple Automation

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 61

Why did I
learn it?

How can I
apply this?

Knowing how to “automate” certain tasks can take the drudgery (&
sometimes danger) out of many types of jobs. Automation in the
automobile industry has significantly improved many facets of the
assembly process. Painting and welding, for example, are now done by
automated robots with more consistency at lower cost and with less
risk to employees.

On the down side, many people during this “automation era”, are being displaced. Retraining is necessary, but
hopefully the next job they get won’t be nearly as hazardous or tedious.

On the plus side, there is a great opportunity for new products and processes that are accomplished
automatically. This has spawned a whole new type of “innovation industry”. No longer do you need to “put nut
A on to bolt B”, hour after hour, day after day. Now you can use your imagination to develop new and ever
changing products that help improve life for everyone.

There are many opportunities to improve what we might consider to
be rather mundane tasks.

For example, you could design a supermarket door that not only
opened automatically, but also kept track of how many people actually
entered (or for that matter, exited) the store.

You could keep track of this during specific time periods throughout the day, so that your microcontroller
would alert the manager of the store that he’s going to need additional check-out clerks, because there’s
more people shopping at this time.

This would improve customer service because the employees wouldn’t be caught “off guard” with a bottleneck
at the checkout stands. Your system would be a form of “shopping crowd early warning device”!

Experiment #5: Measuring an Input

Page 62 • “What’s a Microcontroller?” Student Guide Version 1.4

Experiment 5: Measuring an Input

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 63

Experiment #5:
Measuring an
Input

As we’ve learned so far, each of the BASIC Stamp’s 16 “real
world” pins can be configured as either an input or an output. If
the pin was configured as an input, there are 7 different
instructions in the PBASIC language that can be used. Each of
these commands is suited for specific types of input conditions.

For example, in Experiment #2 we learned how to use a command called “input”. If this command is used in
your program, it causes the specified pin to become an input (gee, that makes sense!). Then, anytime we
wanted to check the status of the pin (whether it was “high” or “low”) we used the statement “if in2=0 then
blink”.

This line of code “looked” at the pin, and returned a value. If the value on that
pin was “0”, then the code would branch off to another point in the program
where it would blink the LED. If the value of the input was a “1” then it would
continue program execution with the next line of code.

In any event, the values that could be detected with this code were binary -
either a “1”or a “0”. This is suitable for detecting whether or not a switch has
been pushed (Exp. #2), or even to detect light or dark on a photocell, as we did
in Experiment #4.

The PBASIC language has some other commands that offer a greater level of
sophistication when it comes to detecting inputs. If you haven’t already,
download a free copy of the BASIC Stamp Manual from
www.stampsinclass.com. In it you’ll find a complete description & application
information of all the commands available in the PBASIC language.

In this Experiment we’re not only going to take an advanced look at “input detection”, but we’re also going to
use a popular integrated circuit named the ‘555 timer.

7 different “input”
instructions:

They are:
Button
Count
Input
Pulsin
Rctime
Serin
Shiftin

We’ve already used “input”
earlier. In this experiment,
we’ll be exploring “Pulsin”

Experiment #5: Measuring an Input

Page 64 • “What’s a Microcontroller?” Student Guide Version 1.4

Parts Required

Build It!

For this experiment you will need the following:

(1) BASIC Stamp II
(1)“Board of Education”
(1) Programming Cable
(1) LED
(1) CMOS 555 timer IC
(1) 10 microfarad, 25 volt electrolytic capacitor
(1) 1 microfarad, 25 volt electrolytic capacitor
(1) 470 ohm, ¼ watt resistor
(1) 100K potentiometer (variable resistor)
(1) 15K ohm, ¼ watt resistor
(1) 1 K ohm, ¼ watt resistor
(1) 9 volt battery or wall transformer
(misc.) connecting wires
(1) Personal Computer running DOS 2.0 or greater, with an available serial port.
(1) BASIC Stamp Editor program

Sources for these materials are listed in Appendix A.

 This hardware circuit uses an Integrated Circuit called a “555 timer”. The
‘555’ is a actually a “bunch of electronic circuitry” (that used to fill up a
large area on a printed circuit board) that has been miniaturized and
encased into the little “8 pin dip” package that we’re using today.
Although it’s a sophisticated array of circuits on the inside of the plastic
case, the ‘555’ is really quite simple to use for many different applications.

In fact, in the many years since it’s development, the ‘555’ has been designed into an untold number and
variety of devices because it can do so many different things. Although it’s not “programmable” like the BASIC
Stamp, the ‘555’ can be configured, with different combinations of resistors and capacitors, to accomplish
many different tasks.

Experiment 5: Measuring an Input

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 65

An IC (integrated circuit) needs to have some sort of identification on its
package to tell us where pin #1 is. The identifier is usually a notch or indentation
located on one end of the plastic package. See Figure 5.1.

As with the BASIC Stamp, each pin on the ‘555’ has a particular purpose.
Although the ‘555’ is fairly “bullet proof”, connecting an improper electrical
signal to the wrong pin can damage the device, so be careful and follow the
diagrams closely.

The type of circuit that we’re building here is called an “astable multivibrator”.
Don’t be put off by its complicated name! All this really means is that the output
of the ‘555’ alternates from high to low. Recall that in Experiment #1 we used
the ‘high’ and ‘low’ commands to blink an LED on and off. In reality, that’s all
that our ‘555’ circuit is doing. It’s just “oscillating” on and off. The ‘555’ circuit
that we’re building, is the hardware equivalent of Experiment #1.

The rate at which the output (on pin #3 of the ‘555’) blinks is controlled by the
values of a resistor and capacitor. As the values of these devices change, the
“blink” rate of the ‘555’ changes.

We’ve used resistors in the past. They control the amount of current flowing
through a given circuit. Since we want to (conveniently) change the rate at
which the ‘555’ blinks, we’re going to use a variable resistor, also known as a
potentiometer. If you’ve ever adjusted the volume on a radio, you’ve used one.
By turning the dial on the “pot”, you change the value of the variable resistor.

Integrated Circuit:
“IC’s” as they’re commonly
called, are electronic circuits
that have been miniaturized
and combined into one
small, convenient package.
Many different types of IC’s
have been created for untold
numbers of applications.
The ‘555’ timer that we’re
using in this experiment is a
member of the “Linear”
family of IC’s. The Stamp’s
CPU is a “Digital” IC.

8 pin dip:
This refers to the package
style of the IC. The ‘555’ has
8 Pins, and these pins are
arranged in a Dual Inline
Package.

Identifier

Pin # 1 2 3 4

 8 7 6 5

 '555'
timer IC

Figure 5.1: 555 Timer IC
Note the notch on one end
of the chip package.

Astable multivibrator::
 A fancy name for a circuit
that with “no outside
intervention” (by other
circuitry or devices), will
continually output a stream
of pulses. Remember when
we created the pulse stream
for the servo control in
Experiments 3 & 4? Same
thing here, except that the
‘555’ will alternate high and
low, without us having to
write a program. It’s a
hardware version of the
software “Pulsout”
commnad.

Experiment #5: Measuring an Input

Page 66 • “What’s a Microcontroller?” Student Guide Version 1.4

This in turn changes the rate at which the ‘555’ blinks.

As you’re connecting the potentiometer, you’ll notice that there are three
terminals or connections available. One of these is the “wiper” and the other
two are the ends of the resistive element. We only need to connect one end
and the wiper contact to our circuit, as shown in Figure 5.2.

When you insert the ‘555’ timer IC into the breadboard area of the Board of
Education, be sure to have the device “span” the “dividing trench”, so that the
pins are not shorted together. Once you’ve completed the circuit shown in
Figure 5.2, go ahead and power up the Board of Education.

Potentiometer:
A “pot” is just a resistor that
changes its value as you
manually rotate (or in some
cases slide) its shaft or dial.
Recall that resistors have
two “leads” or connections.
A pot has three connections.
The center lead is connected
to a wiper that “wipes”
across a resistive element.
The closer the wiper gets to
either end of the element,
the lower the resistance
between the wiper and the
end it’s approaching. Pots
come in many different
values, such as 5K, 10k, 100k,
1 meg ohms, and more. They
also come in many different
physical configurations to
accommodate different
product designs. But they all
operate essentially the same
way – mechanical movement
of the wiper element
changes the resistive value
of the device.

Figure 5.2: 555 Timer Schematic
Schematic for Experiment #5 on the Board of Education.

About the schematics:

It is common practice on
schematic diagrams to draw
the pins of an IC wherever
they make the diagram
easiest to read.

Experiment 5: Measuring an Input

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 67

Program It!
Start the BASIC Stamp Editor. If you don't remember how to do this
refer back to an earlier experiment.

Pin #4 (on the ‘555’ is a “reset” pin. It is an “input” to the ‘555’ and as long as this pin sees a ‘high’, the ‘555’ will
operate. In order for our circuit to work without interaction from the BASIC Stamp, we connected pin #4 (on
the ‘555’) directly to Vdd (high). This kept pin #4 in a high state, which allowed the ‘555’ to blink the LED. Now
move the end of that wire from Vdd to P1 to give the BASIC Stamp control.

Type in the following program:

here:
high 1
pause 5000
low 1
pause 5000
goto here

Now while holding the “ALT” key down, type “r” (for “run”) and press “enter”.

What’s happening, & why? If everything is working properly, you should see the
LED blink on, off, on, off, etc. (for a period of 5 seconds) & then be completely
off for 5 seconds. Then the program recycles and does it again.

Since P1 (on the BASIC Stamp) is connected to the reset pin on the ‘555’, every
time P1 goes ‘high’ it allows the ‘555’ to blink the LED on and off. And whenever
P1 goes low (under our program control), it shuts off the ‘555’ circuit.

Ok you say, but so what?

Well, think about it this way. Microcontrollers are only capable of doing one
thing at any one time. If we want to blink an LED on and off as a “warning

indicator”, then while the BASIC Stamp is doing its “high - pause - low – pause - repeat” routine (to blink the
LED), the BASIC Stamp is not able to do anything else.

Now, as shown in the following program, you can turn on the “LED blinker circuit” and continue on (in your
program) and do something else “more important”. Try it.

Reset:
As mentioned, this is a
control pin on the ‘555’
timer IC. If we connect this
pin to P0 on the Stamp, & P0
is configured as an “input’,
then the ‘555’ circuitry may
in fact operate (although
perhaps unreliably). In this
situation we have two inputs
(P0 on the Stamp and ‘reset’
on the ‘555’) connected
together. A pin configured
as an input on the Stamp will
tend to “float” high. This is a
“floating condition, however
and is not guaranteed to be
a true “high”. When we
make P1 an output, and
cause it to go “high”, it does
so, and drives pin 4 (on the
‘555”) high, rather that just
“floating” it up.

Experiment #5: Measuring an Input

Page 68 • “What’s a Microcontroller?” Student Guide Version 1.4

x var word
low 1
here:
high 1 ‘turn the blinker on
for x = 1 to 500
debug ? x ‘count to 500 on the screen
next ‘while the LED blinks
pause 3000
low 1 ‘turn the blinker off
pause 2000
goto here ‘go back and do it again

What we’ve done here is “off-loaded” the task of actually blinking the LED (on, off, on, off, etc.) from the BASIC
Stamp. The action of “blinking“ is accomplished by the ‘555’ timer circuit. All the BASIC Stamp needs to do is
enable or disable the “blinker circuitry”. The BASIC Stamp can then go on and do other more important tasks.
In this example, the “more important task is to count up to 500 and display the numbers on the screen. In the
real world, however, you might be looking for other “input conditions” to be met (on some other pin on the
BASIC Stamp).

In this circuit, so far, we’ve been using a 10 microfarad capacitor. Shut off the
power & replace the 10 microfarad capacitor with a 1 microfarad cap. Be sure
to observe the proper polarity on the capacitors. Go ahead & re-apply power.

By reducing the value of the capacitor (C1) we’ve increased the blink rate of the
LED (in this case, 10 fold). Even though it may be difficult to see visually, the LED
is still blinking, but at a much higher rate.

In Experiment #4 (where we controlled the rotation of a servo), we used a
command called “Pulsout”. Recall that “pulsout” generated a single pulse output
of a length determined by one of the commands’ parameters.

For example, to create a pulse length of 1 millisecond (on P1), the command
was: Pulsout 1, 500. The value of 500 is the number of two microsecond
increments. Therefore 500 times 2 microseconds = 1000 to microseconds or
one millisecond.

We're now going to use a new command called “pulsin”.

Microfarad:
 A unit of measurement for
the amount of “charge” that
can be stored in a capacitor.
Similar to the “ohm” value
for resistors, the microfarad
(for capacitors) is available
in a wide range of values. 1
microfarad is equal to
1/1000000 of a farad. We’ll
explore capacitors in an
upcoming experiment, but
for now, understand that the
lower the value, the lower
the charge that you can
store on the capacitor,
which results in faster
oscillation of the 555 circuit.

Experiment 5: Measuring an Input

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 69

Pulsin is the input counterpart to pulsout. Rather than generating an output pulse of a predetermined
length, pulsin looks at a particular input pin and measures the length of an incoming pulse and returns the
length of that pulse in a variable.

Try the following program:

x var word

high 1

here:
pulsin 0,1,x
debug ? x
goto here

What’s happening?
Pin #3 of the ‘555’ timer circuit is connected to the LED. The LED blinks at the rate determined by the value of
the potentiometer (& the capacitor). We’ve also connected the output of the ‘555’ to P0 on the BASIC Stamp.

x var word
This simply sets up a variable called “x”, that is one word (or 16 bits) in size. This means that x can go

as high as 65,536 (decimal).

high 1
This causes P1 to go high, which in turn (since its connected to the reset pin #4 on the ‘555’), allows it

to oscillate.

here:
A label to jump back to . . .

pulsin 0,1,x
This single command tells the BASIC Stamp to:

Look at an incoming pulse on P1.

Wait for that pulse to go from low to high.

As soon as it does, start a “stopwatch”, and continue to monitor the pin.

Experiment #5: Measuring an Input

Page 70 • “What’s a Microcontroller?” Student Guide Version 1.4

As soon as the pulse goes back to low, then stop the “stopwatch” and return a the value in a variable called
“x”. This value is in two microsecond increments.

debug ? x
This displays the value of “x” on the PC.

goto here
Do it again.

Now, try adjusting the value of the pot. What’s happening to the value of “x”? Can you explain what’s
happening?

Whenever you change the value of the pot, the blink rate of the LED is changed. Pulsin can only measure up to
a maximum of 131 milliseconds, that’s why we increased the blink rate of the LED (by lowering the value of the
capacitor). With the 10 microfarad capacitor, the blink rate was just too slow for pulsin to be able to
measure it.

You can now actually measure the value of the blink rate of the LED. Take the value of “x” displayed on your
screen, multiply it by two (remember that pulsin measures in 2 microsecond intervals) and you’ll get the
length (in microseconds) of each “blink”.

The pulsin command is a significantly more advanced “input detector” command than a simple statement like
“in” (or input), but they both have their appropriate uses – it just depends on the application.

Be sure and check out Appendix B and for a complete listing of PBASIC commands see the BASIC Stamp
Manual Version 1.9. The Application Notes also show different ways to use the pulsin command.

Experiment 5: Measuring an Input

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 71

Questions

1. What is a potentiometer, & what is one typically used for?

2. Why might we want to use a ‘555’ timer to blink an LED instead of using the BASIC Stamp?

3. What does the pulsin command do?

4. What does the Reset pin on the ‘555’ do, & how do you connect it to the BASIC Stamp?

5. Add appropriate remarks to the following program:

low 1 ___________________________________
here: ___________________________________
high 1 ___________________________________
for x = 1 to 500 ___________________________________
debug ? x ___________________________________
next ___________________________________
pause 3000 ___________________________________
low 0 ___________________________________
pause 2000 ___________________________________
goto here ___________________________________

Experiment #5: Measuring an Input

Page 72 • “What’s a Microcontroller?” Student Guide Version 1.4

Challenge!

1. Write a program (complete with remarks) that will allow the LED to blink whenever a switch is connected
to P8. (You’ll need to build this circuit in hardware – if you need a hint, refer to Experiment #2 on
connecting a switch to an input pin).

2. Draw the schematic diagram of your circuitry from Challenge #1.

3. Replace the switch part of the circuit in Challenge #1, with the photosensor circuit from Experiment #4.
Connect the photosensor to P10 and write a program that will enable the ‘555’ blinker circuit for a
period of 3 seconds, whenever the sensor “sees a shadow”.

4. Write a program that will display (using debug) the measured value of pulsin & whenever the value falls
below 10000, the reset pin is brought low, shutting off the blinking circuit.

Experiment 5: Measuring an Input

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 73

What have I
learned?

On the lines below, insert the appropriate words from the list on the left.

The ‘555’ timer is an ______________________ circuit that can be used for many different
applications. In this Experiment, we used it to create a stream of
______________________that caused an LED to blink. We then connected the
__________________________of the ‘555’ to the BASIC Stamp and were able to measure the
length of each pulse in __________________________.

A potentiometer is a mechanical version of a __________ __________ resistor. To increase
or decrease the ___________ ___________ of the pot, you physically rotate the shaft, not
unlike changing the ____________________________on your home stereo.

The “blink rate” of the ‘555’ timer circuit is determined by the ______ ______ of a
resistor (measured in ohms) and a capacitor (measured in __________________________). A
microfarad is equal to 1 / 1000000 of a farad.

The Pulsin command is the “input equivalent” to the _____________ _____________ command.
Pulsin can measure pulses up to ______________________ in length. In our program, using
the __________ __________ command, we could actually measure the length of each pulse
that was blinking the __________.__________.

Utilizing hardware to accomplish simple things is sometimes the best solution to
accomplish a given task. If you have an application that needs to do two things
________________________, you will need to weigh the benefits / disadvantages of adding
additional ___________ ___________ circuitry to your design.

microfarads

output

volume level

simultaneously

values

.131 seconds

hardware

debug

variable

integrated

pulses

Pulsout

microseconds

resistance

LED

Experiment #5: Measuring an Input

Page 74 • “What’s a Microcontroller?” Student Guide Version 1.4

Why did I
learn it?

How can I
apply this?

This Experiment demonstrates the interfacing of other types of
integrated circuits to a microcontroller. Microcontrollers are only
capable of doing one thing at any one time. In many cases, this
restriction isn’t a problem because the microcontroller operates at
such a high rate of speed. If however, you absolutely need to be doing
more than one thing at a time, the challenge can be easily solved by
using additional circuitry as we did with the " 555" timer integrated
circuit.

The "555" timer has been used in innumerable applications and products throughout the years. In this
experiment, we used the timer in what we call “astable multivibrator” mode. This was a relatively simple
example of how to off-load some of the processing that ordinarily would have to be accomplished by the
microcontroller. Many products that use a microcontroller as their central processing unit (CPU), rely heavily
on additional circuitry to accomplish certain tasks.

This is not to say that a microcontroller cannot do the job, but rather it is sometimes quicker and more cost-
effective to use additional circuitry, to accomplish a given task. As you design your own circuits, you’ll need to
make decisions between additional code or additional hardware to come up with the most appropriate
solution.

In some upcoming experiments, we will be connecting many other types of IC’s to the BASIC Stamp which
significantly enhance its operation and capabilities to interact with the "Real World".

And of course, knowing how to interface different types of integrated circuits and components together is
one of the foundational disciplines required of an electronics engineer.

As you continue to experiment with microcontrollers, you’ll discover
many different ways to interface or connect things. Some of these
methods may be from some “application note” that was developed by a
semiconductor company, still others might be your own creation. In any
event, knowing the basic methods of connecting IC’s together to form a
reliable product is a very valuable skill.

Many of you have pagers or cell phones. These, as we’ve mentioned before have microcontrollers as their
basic “brain”. But in order for these devices to realize their true potential, they need “support circuitry” (not
unlike our 555 timer). And the ability to design a suitable hardware solution will always be in demand.

Experiment 6: Manual to Digital

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 75

Experiment #6:
Manual to Digital

Economic Decision
As you begin to create your
own circuits, whether or not
it’s a commercial product,
the cost of “electronic
hardware” can rise rapidly –
especially if you do this as an
avid hobby outside of a
normal classroom. It
becomes increasingly
important to decide which is
the best approach to solve a
particular task. Sometimes
the best and cheapest aren’t
the same option. As we’ll
discover, many times you’ll
be able to solve a task both
ways. It might take you
longer to do it in software,
but it (not counting your
time) will almost always be
cheaper.

In our last experiment, we used one of the most popular
integrated circuits of all time, the ‘555’ timer. With it, we built
an “astable multivibrator” – a fancy name for a circuit that
blinked an LED.

Recall that the blink rate was controlled by the values of two components: a capacitor and a resistor. In
order for us to conveniently change the blink rate, we substituted a potentiometer in place of the (normally)
fixed value resistor. By manually rotating the shaft of the pot, we changed its resistance.

Some devices are now available that allow us to eliminate the “manual” element of changing a resistive value.

You may be familiar with cellular phones that require you to press a button rather than spin a dial to adjust
the speaker volume. In many cases, this is done with a circuit similar to the one that we’re going to create.
Instead of changing the volume of a speaker, we’re going to return to our ‘555’ blinker circuit, and not only be
able to turn the circuit on and off, but also vary the blink rate of the LED.

Remember, all this is accomplished in hardware. It is important to realize that
in every design, you’ll make tradeoffs – either to do it in code or implement the
function in hardware. There isn’t just one correct answer. In many cases you
could do both, and then it becomes an economic decision – which method
would be least expensive? And, could the code control all of the functions
reliably?

These are questions that are asked throughout the design process. As we’ll
discover in this Experiment, there are many different methods to accomplish a
certain task, and sometimes it is better to let the microcontroller do the “really
hard stuff”, like calculations for example, and leave the mundane (blink the LED
at a different rate) tasks to a simple hardware circuit.

Get out your Board of Education and make something happen!

Experiment #6: Manual to Digital

Page 76 • “What’s a Microcontroller?” Student Guide Version 1.4

Parts Required

Build It!

X9313:
Many different number and
letter combinations are used
throughout the
semiconductor industry to
refer to individual
components. These are
simply reference numbers
for specific types of devices.

This particular IC is
manufactured by a company
named “Xicor”.

For this experiment you will need the following:

(1) BASIC Stamp II module
(1)“Board of Education”
(1) Programming Cable
(1) LED
(1) 555 timer IC
(1) X9313TP digital resistor (IC)
(1) 10 microfarad, 25 volt electrolytic capacitor
(1) 1 microfarad, 25 volt electrolytic capacitor
(1) 470 ohm, ¼ watt resistor
(1) 100K potentiometer (variable resistor)
(1) 15K ohm, ¼ watt resistor
(1) 1 K ohm, ¼ watt resistor
(1) 9 volt battery or wall transformer
(misc.) connecting wires
 (1) BASIC Stamp Editor program

Look at the circuit as shown in Figure 6.1. As you’ll notice, this is
essentially the same the LED Blinker circuit that we created in
Experiment #5. Recall that the LED “blink rate” was changed by
turning the potentiometer.

Now build the circuit shown in Figure 6.1. Connect the X9313 integrated
circuit in the potentiometer’s place. Also notice that the reset line on the 555
(pin #4) is now connected to P0 on the BASIC Stamp.

Ok, what is the X9313? Remember that a potentiometer is nothing more that a
variable resistor that changes its resistance when you rotate, or mechanically
move its wiper or contact arm. This change in resistance is responsible for the
change in the blink rate of the 555 timer circuit.

The X9313 is a “digitally controlled” potentiometer. You can change its
resistance (just like you did with the manual pot), but instead of mechanically
moving the wiper, you’re able to send digital pulses to it from the BASIC Stamp.
These digital pulses change the location of the wiper and therefore, change the
blink rate of the 555.

Experiment 6: Manual to Digital

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 77

Figure 6.1:Digital
Potentiometer. Replace
the manual potentiometer
with the Xicor “digital
resistor” in Experiment 6,
revising the circuit as
shown.

The dotted lines indicate
an “optional” 0.1 uF
capacitor which may be
needed for ‘555’
manufacturers other than
SGS / Thompson or TI.

Experiment #6: Manual to Digital

Page 78 • “What’s a Microcontroller?” Student Guide Version 1.4

Take a look at Figure 6.2. This is an internal diagram of what’s located on the inside of the X9313 integrated
circuit. The resistive element has a total value of 100k ohms. The wiper, while not totally “continuous”, can be
positioned to any one of 31 discrete positions.

This means that the 100k value of the 9313 can be positioned at 31 distinct
locations along the resistive element – each step representing approximately
3230 ohms.

(31 x 3230 = 100k).

Therefore, when the wiper is at the “low side” of the resistive element, the
resistance is approximately zero ohms (measured between the “low” terminal
and the wiper). As the wiper is “stepped” up one location the resistance
changes to 3230 ohms. A second increment will cause the value to become
approximately 6460 ohms. And so on, up to 100k.

In Experiment #5 we created a circuit that could enable (or disable) a 555 timer
/ blinker circuit. However, the only way that we could alter the blink rate was
to manually rotate the mechanical pot. With the X9313 we can now have the
BASIC Stamp not only enable or disable the circuit, but it can control the blink
rate as well.

Zero ohms:
For various reasons, it’s not
really “0” ohms. There are
resistances in the wires,
leads and connections inside
the IC, as well as actual
resistances in the silicon
itself. In the X9313, the
wiper arm itself introduces
approximately 40 ohms into
the circuit. We can usually
disregard these types of
“errors” because, in the case
of the X9313, the overall
resistance is 100k ohms.
Forty ohms really doesn’t
affect our circuit – at least
not enough to worry about.

Figure 6.2:Inside the
X99313. This “digitally
controlled”
potentiometer takes
the place of the
manual version.

Experiment 6: Manual to Digital

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 79

Program It! Make sure that your programming cable is connected to the Board of
Education and then go ahead and apply power.

Type the following program into the BASIC Stamp Editor:

x var word
y var word
output 0
output 1
output 2
output 3
high 0

low 3

low 2
for x = 1 to 32
 high 1
 low 1
next

high 2
for y = 1 to 2
 high 1
 low 1
next

here:
goto here

Ok, what’s the program doing? If it’s operating correctly, your LED should be
blinking (fairly quickly). If not, check your code & make sure you typed it in
correctly.

Now try this: Change the value of “y” from 2 to 25.

Your code (with remarks), should now look like this:

If you get a message that
says, “Hardware not found”,
re-check the cable
connections between the PC
and Carrier Board, & also
make sure that the 9 volt
battery (or wall transformer)
is connected & charged.

 Try downloading again (hold
down the ALT key, & then
press “r”). If it still doesn’t
work, you may have a bug!
Re-check your program to
be certain you’ve typed the
program correctly.

After checking your
connections, press ALT “r”
again. If you still receive the
“hardware not found”
message, then make sure
your computer is running in
DOS, not Win95. If it is
running in Win 95, then press
the Start button (on the
monitor), and select “Restart
in MS-DOS mode”.

If after trying this, you’re still
having problems, ask you
instructor for help.

Experiment #6: Manual to Digital

Page 80 • “What’s a Microcontroller?” Student Guide Version 1.4

x var word
y var word

output 0 '555 reset
output 1 'increment
output 2 'UP / down
output 3 'chip select

high 0 ‘enable the blinker
low 3 ‘select the X9313

‘this section resets the variable resistor to zero ohms

low 2 ‘the pulses cause the X9313 to go “down”
for x = 1 to 32
 high 1 ‘pulse it
 low 1
next ‘cycle 32 times

‘this routine sets the value of the variable resistor to a value ‘determined by ‘y’ in the For…Next Loop.

high 2 ‘the pulses cause the X9313 to go “up”
for y = 1 to 25
 high 1
 low 1
next ‘cycle 25 times (set the resistor up 25 positions)

here: ‘after setting the resistor, stay here and do nothing
goto here

Run the program.

What happened? Why?

Let’s take a closer look at our code:

x var word
y var word

Nothing new here, all we’re doing is setting up a couple of variables called “x”” and “y”.

Experiment 6: Manual to Digital

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 81

output 0 '555 reset

This output is connected to the timer’s reset line. Therefore by changing the value of P0’s
output, we can turn the blinker circuit on or off.

output 1 'increment

This command we’ve done many times before, but what is P1 connected to?
The answer can be found in the data sheet for the X9313 variable resistor. The increment signal (pin #1 on
the X9313) is where we want to send in our pulses to move the wiper. As you’ll see, we’ll use the ‘high’ and
‘low’ commands to pulse this signal line.

output 2 'UP / down

Another output from the BASIC Stamp that is connected to a signal called “UP / down” on
the 9313. When we program the BASIC Stamp to make P2 high then any pulses on the “increment pin” will
cause the variable resistor to increase in value. Conversely if P2 is low, then any pulses on the increment
signal line will cause the X9313 to decrease in value.

output 3 'chip select

The chip select signal is simply a way of allowing the X9313 to have its value changed. If the
chip select signal (on pin 7 of the 9313) is high, then any pulses or “UP / down” signals are simply ignored. The
signal (coming from P3 on the BASIC Stamp) is “active low”.

high 0 ‘enable the blinker

OK, this sets P0 to high, therefore enabling the blinker circuit.

low 3 ‘select the X9313

Since P3 is “chip select” (and it’s active low), making P3 a “0” enables the X9313 to receive
pulses and modify its resistance setting.

low 2 ‘the pulses cause the X9313 to go “down”

Whenever the X9313 is first turned on, we don’t have any idea where the wiper is set
because we can’t visually see it. Therefore, this routine (beginning with this command) will send out enough

Experiment #6: Manual to Digital

Page 82 • “What’s a Microcontroller?” Student Guide Version 1.4

pulses to set the resistive wiper element all the way back to the beginning. Since there are 32 discrete
positions on the resistive element, by pulsing it “down” (setting the direction with the command “low 2”) at
least 32 times, ensures that it’s at the beginning. It doesn’t really matter if you pulse it “down” (or “up” for
that matter) more than 32, the X9313 will just “bottom out” and disregard the extra (unnecessary pulses).

for x = 1 to 32

This sends the wiper all the way to the “bottom” of the resistive element.

high 1 ‘pulse it
low 1
next ‘cycle 32 times

These commands make P0 go high and low, resulting in a single pulse, and because we’re in a
For…Next loop that cycles 32 times, this creates 32 pulses. The “digital resistor” is now set to “0” ohms.

high 2 ‘the pulses cause the X9313 to go “up”

The P2 signal that was set “low” above (causing the wiper to move “down”) is now set “high”
so that any pulses (on pin 1 of the 9313) from this point on in the program, will cause the wiper to move “up”.

for y = 1 to 25

This loop length can be changed from anywhere between 1 and 32. Try different values.
Each time you change the value (that the For…Next loop cycles), run the program. You’ll see that the blinker
operates at a different rate, depending upon your value.

high 1
low 1
next ‘cycle 25 times (set the resistor up 25 positions)

In this case we’re cycling 25 times, which causes the wiper to move up “25 positions”.

here: ‘after setting the resistor, stay here and do nothing
goto here

At this point our program just sits there and loops, doing nothing. In a “real application” however,
your program would continue doing other tasks, meanwhile the blink rate (that was set by your
microcontroller) continues, with no other BASIC Stamp interaction required.

Experiment 6: Manual to Digital

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 83

OK, lets modify the program as follows to make the blink rate increase and decrease visibly:

x var word
y var word

output 0 '555 reset

output 1 'increment
output 2 'UP / down
output 3 'chip select

high 0 ‘turn on the blinker

here:
low 2 ‘point the wiper “down”
low 3 ‘select (or enable) the X9313 to receive data

for x = 1 to 32 ‘reset the value of the wiper to “0” slowly
 high 1
 low 1
pause 200
next

high 2 ‘point the wiper “up”
for x = 1 to 32 ‘make it go up 32 discrete positions
 high 1
 low 1
pause 200 ‘pause for a short time so that we can see it.
Next
goto here ‘do it again

The first part of the program is the same, with the exception of the placement of the “here” label, and the
following modifications:

high 2 ‘point the wiper “up”

This makes the wiper go in the up direction, whenever the chip is selected, and it receives pulses on
the “increment” pin.

Experiment #6: Manual to Digital

Page 84 • “What’s a Microcontroller?” Student Guide Version 1.4

Ohmmeter:
An ohmmeter is a device
that actually measures the
value of a particular resistor.
It works by forcing a current
through the resistor and
measuring the voltage drop
across it.

In most cases, you need to
have the power off (to your
circuit) if you’re going to use
an ohmmeter. In the case of
the X9313, however, you can
leave power applied as long
as you only touch the three
terminals (representing the
potentiometer terminals)
with the probes. In fact, in
order to be able to measure
the wiper value at any point,
power must be applied. This
is a rare instance – and is
not the norm.

for y = 1 to 32 ‘make it go up 32 discrete positions

At first thought, it appears as though we’re going to set the position of
the wiper all the way “up”. Eventually we do, but not right away.

high 1
low 1

Here’s where the pulses are created.

debug ? y

This allows us to see where the wiper is positioned

pause 200 ‘pause for a short time so that we can see it.

Now, by placing “pause” here, we’re able to see just how the wiper is
moved in the upward direction. You’ll notice that the LED is blinking slower and
slower as the wiper is moved (internally) on the variable resistor chip.

next
goto here ‘do it again

Instead of recycling in a “do nothing” loop, we now are going back to
do it all over again.

Experiment. Change some of the loop values. What happens when you don’t “reset” the wiper all the way
back to “low”? Try pulsing the wiper beyond its 32 position “limit”.

If you have access to an ohmmeter, you can actually measure the resistance changes in the X9313 between
the wiper and either end of the “pot” terminals.

Experiment 6: Manual to Digital

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 85

Questions

1. What does “chip select” mean?

2. How is the X9313 different from the potentiometer that we used in Experiment #5?

3. Why does the For…Next command come in useful in this Experiment?

4. Why is it important to know how to hook up hardware, rather than just writing programs for a
microcontroller?

5. Add appropriate remarks to the following program:

x var word __
y var word __
output 0 __
output 1 __
output 2 __
output 3 __
high 0 __
low 3 __

low 2 __
for x = 1 to 32 __
high 1 __
low 1 __
next __

high 2 __

Experiment #6: Manual to Digital

Page 86 • “What’s a Microcontroller?” Student Guide Version 1.4

Challenge!

for y = 1 to 20 __

high 1 __
low 1 __
next __
here: __
goto ___
here ___

1. Write a program (complete with remarks) that alternates the rate of the LED blinker circuit from a slow
speed to a fast speed, every 5 seconds.

2. Write a program that changes the rate of the blinker circuit every 1 second. The rate is to go from a fast
blink to a slower blink. Once the circuit has cycled one complete time (after approximately 31 seconds!)
have the program stop the blinker circuit and go to a “do nothing” loop. Display the wiper position as it
is changing, on your PC using debug.

3. Replace the 10 microfarad capacitor in the 555 timer circuit with a 1 microfarad cap. Connect the
output of the 555 to P5 on the BASIC Stamp. Now draw the complete schematic of your circuit.

4. Using the circuit from Challenge #3, modify the program from Challenge #2 to measure the length of the
pulses in (2) microsecond increments using the ‘pulsin’ command on the BASIC Stamp’s P5 pin. Have the
program recycle & do it again.

Experiment 6: Manual to Digital

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 87

What have I
learned?

On the lines below, insert the appropriate words from the list on the left.

The ________________ is capable of doing many different things. It all depends
on what type of ____________ is connected to it. In this Experiment we built a
555 timer circuit and allowed the microcontroller to send out a series of
_________ that not only enabled the blinking circuit, but also controlled the actual
________ of the pulses coming out of the 555.

The control of the blink rate was accomplished by replacing the “__________” pot
that we used in our last Experiment with the X9313 “digital potentiometer”. There
are many devices, such as the X9313, that allow microcontrollers to
_____________ and control things in the “real world”.

By setting the blink rate at a certain point, the BASIC Stamp was free to “go about
other business”, such as calculating or ____________ data on our PC.

Many times it is necessary to free up valuable (and sometimes expensive)
___________________ for more important tasks. We saw this initially in
Experiment #4, and we now see that the potential of “________________” some
of the processing from the microcontroller may in fact, be unlimited.

It’s possible, for example that a complete control system could be built with no
microcontroller at all. It would be made entirely of “discrete” logic. In fact, until the
emergence of the ______________, this was how circuits were built.

The microcontroller therefore gives us the option of choosing whether a
_____________ should be solved in hardware or software. It’s all part of the
__________ process.

design

program space

manual

function

pulses

hardware

interface

off-loading

displaying

BASIC Stamp

rate

microcontroller

Experiment #6: Manual to Digital

Page 88 • “What’s a Microcontroller?” Student Guide Version 1.4

Why did I
learn it?

How can I
apply this?

If you happen to choose this field as a career, (whether for the first
time, or later in life) there are many attributes that could give you an
advantage over others. As we’ve learned in the last two Experiments,
there is almost always more than one way to solve a problem.
Knowing when to do it in “hardware” or when to write the “code”, is a

very desirable talent. There are an unlimited number of opportunities for innovative design engineers and
especially those that know how to best “blend” hardware and software together resulting in the “best”
product.

Even if you’re not planning on this field as a career, the ability to be flexible in your approach to problem
solving will help you stand out in whatever discipline you choose.

Why not design a BASIC Stamp controlled stereo system for your
home that detects when someone walks into the room? The BASIC
Stamp could detect your presence - similar to how we used the
photo-resistor in an earlier Experiment. Now, since the BASIC Stamp

is “always” looking to make sure that somebody is in the room, it really can’t spend a whole lot of time sending
out continuous control signals to the volume control on the stereo.

Therefore, utilizing a device such as the X9313, the BASIC Stamp can monitor other inputs & based on that
data, set the appropriate sound level. Then, as you enter the room (detected by the BASIC Stamp), the
program causes the stereo volume to gradually increase to a pleasant level. If the phone rings, (using another
type of sensor) the BASIC Stamp would automatically decrease the stereo’s volume so that you could talk on
the phone with no objectionable background “noise”.

Appendix A: Parts Listing and Sources

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 89

Parts Listing
All components (next page) used in the first six experiments are
readily available from common electronic supploiers including Mouser
and Digi-Key. Customers who would like to purchase a complete kit
may also do so through Parallax. Parallax adds a small packaging and
handling fee to the parts, partially offset by our volume purchases

made to the suppliers. Customers may realize a small savings of 10% on high volumes (25+ units) of the
“What’s a Microcontroller?” Parts Kit by building their own component kits.

The first six experiments require the Board of Education Full Kit (#28102):

Parallax also manufactures the Board of Education Kit (#28150), consisting of the board and pluggable wires
only. Use this kit if you already have a BS2-IC module and power supply. Individual pieces may also be ordered
using the Parallax stock codes shown below.

Board of Education – Full Kit (#28102)
Parallax Code# Description Quantity
28150 Board of Education 1
800-00016 Pluggable wires 6
BS2-IC BASIC Stamp II module 1
750-00008 300 mA 9 VDC power supply 1
800-00003 Serial cable 1

Board of Education Kit (#28150)
Parallax Code# Description Quantity
28102 Board of Education and pluggable wires 1
BS2-IC Pluggable wires 6

This printed documentation is very useful for additional background information:

BASIC Stamp Documentation
Parallax Code# Description Internet Availability?
27919 BASIC Stamp Manual Version 1.9 http://www.stampsinclass.com
28123 “What’s a Microcontroller?” Text http://www.stampsinclass.com
27951 “Programming and Customizing the

BASIC Stamp Computer”
Table of Contents only from
http://www.stampsinclass.com

Appendix A: Parts Listing and Sources

Page 90 • “What’s a Microcontroller?” Student Guide Version 1.4

The first six lessons require the “What’s a Microcontroller?” Parts Kit (#28144)

The contents of the “What’s a Microcontroller?” Parts Kit is listed below. These parts are required for
experiments one through six. In case you need specific replacement parts from Parallax the stock code is
listed for each individual component. If you would rather purchase these components elsewhere and need
assistance identifying an appropriate source for these parts, please feel free to contact us at
stampsinclass@parallaxinc.com.

What’s a Microcontroller? Parts Kit (#28144)

Parallax Code# Description Quantity
150-04710 470 ohm ¼ watt 5% resistor 6
350-00006 LED, red color 6
150-01030 10K ¼ watt 5% resistor 2
400-00002 Tact switch (4-lead pushbutton type) 2
800-00016 Pluggable jumper wires, bag of 10 1
900-00002 DC hobby servo (Hitec HS 300 or equivalent) 1
201-03080 3300 uF electrolytic capacitor** 1
451-00301 3 pin single row header 1
150-01020 1K ohm ¼ watt 5% resistor 5
350-00009 Photo-resistor (EG&G Vactec) 1
604-00006 CMOS 555 timer - 8 pin dip (use SGS/Thompson or TI)* 1
201-01050 1uF electrolytic capacitor** 1
201-01062 10 uF electrolytic capacitor** 1
150-01530 15k resistor 1/4 watt 1
152-01040 100k potentiometer 1
152-01041 100k solid state potentiometer (Xicor X9313TP) 1
* If not using specified manufacturer part, you may need to connect a 0.1 uF capacitor between Pin 7 and Vdd in

Experiment #6, Manual to Digital.
** Capacitor voltage ratings should be equal or greater than 16V.

Appendix A: Parts Listing and Sources

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 91

Sources
The Parallax distributor network serves approximately 40 countries
world-wide. A portion of these distributors are also Parallax-authorized
“Stamps in Class” distributors – qualified educational suppliers. Stamps in
Class distributors normally stock the Board of Education (#28102 and
#28150) and sometimes the “What’s a Microcontroller?” Parts Kit

(#28144). Several electronic component companies are also listed for customers who wish to assemble their
own “What’s a Microcontroller?” Parts Kit.

Country Company Notes
United States Parallax, Inc.

3805 Atherton Road, Suite 102
Rocklin, CA 95765 USA
(916) 624-8333, fax (916) 624-8003
http://www.stampsinclass.com
http://www.parallaxinc.com

Parallax and Stamps in Class source.
Manufacturer of the BASIC Stamp.

United States Jameco
1355 Shoreway Road
Belmont, CA 94002
(650) 592-8097, fax (650) 592-2503
http://www.jameco.com

Parallax Stamps in Class distributor. Also a
reliable source for components.

United States Peter H. Anderson
915 Holland Road
Bel Air, MD 21014
(410) 838-6500, fax (410) 836 8526
http://www.phanderson.com

Parallax Stamps in Class distributor and
professor. Stocks many do-it-yourself BASIC
Stamp kits using the “home-brew” approach.

United States Digi-Key Corporation
701 Brooks Avenue South
Thief River Falls, MN 66701
(800) 344-4539, fax (218) 681-3380
http://www.digi-key.com

Source for electronic components. Parallax
distributor. May stock Board of Education.
Excellent source for components.

United States Mouser Electronics
345 South Main
Mansfield, TX 76203
(800) 346-6873, fax (817) 483-6899
http://www.mouser.com

Source for electronic components. Parallax
distributor. May stock Board of Education in 1999.
Excellent source for components.

Appendix A: Parts Listing and Sources

Page 92 • “What’s a Microcontroller?” Student Guide Version 1.4

Australia Microzed Computers
PO Box 634
Armidale 2350
Australia
Phone +612-67-722-777, fax +61-67-728-987
http://www.microzed.com.au

Parallax distributor. Stamps in Class distributor.
Excellent technical support.

Australia RTN
35 Woolart Street
Strathmore 3041
Australia
phone / fax +613 9338-3306
http://people.enternet.com.au/~nollet

Parallax and Stamps in Class distributor.

Canada Aerosystems
3538 Ashby
St-Laurent, QUE H4R 2C1
Canada
(514) 336-9426, fax (514) 336-4383

Parallax distributor and Stamps in Class
distributor.

Canada HVW Technologies
300-8120 Beddington Blvd NW, #473
Calgary, AB T3K 2A8
Canada
(403) 730-8603, fax (403) 730-8903
http://www.hvwtech.com

Parallax distributor and Stamps in Class
distributor.

Germany Elektronikladen
W. Mellies Str. 88
32758 Detmold
Germany
49-5232-8171, fax 49-5232-86197
http://www.elektronikladen.de

Parallax distributor and Stamps in Class
distributor.

New Zealand Trade Tech
Auckland Head Office, P.O. Box 31-041
Milford, Auckland 9
New Zealand
+64-9-4782323, fax 64-9-4784811
http://www.tradetech.com

Parallax distributor and Stamps in Class
distributor.

Appendix A: Parts Listing and Sources

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 93

Netherlands Antratek
Kanaalweg 33 2903
LR Capelle A/S Ijssel
Netherlands
+31-10450-4949, fax 31-10451-4955
antratek@box.nl

Parallax distributor and Stamps in Class
distributor.

United Kingdom Milford Instruments
Milford House
120 High St., S. Milford
Leeds YKS LS25 5AQ
United Kingdom
+44-1-977-683-665
fax +44-1-977-681-465
http://www.milinst.demon.co.uk

Parallax distributor and Stamps in Class
distributor.

Appendix A: Parts Listing and Sources

Page 94 • “What’s a Microcontroller?” Student Guide Version 1.4

Appendix A: Parts Listing and Sources

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 95

Boooks and
Internet
Resources

If you are new to BASIC Stamps, electronics, or programming
there are several internet and printed sources you may wish to
investigate.

Books and Publications

Programming & Customizing the Basic Stamp Computer by Scott Edwards. ISBN 0-07-913684-2. Available
from Parallax (#27905) and Amazon (http://www.amazon.com).

Parallax BASIC Stamp Manual Version 1.9 from Parallax (#27919) and distributors.

Nuts and Volts Magazine Stamp Applications. Published each month in Nuts and Volts magazine
(http://www.nutsvolts.com), with past issues available for free download from their web site.

Internet

Parallax web site http://www.parallaxinc.com and the Parallax Stamps in Class web site
http://www.stampsinclass.com include free downloadable BASIC Stamp resources.

Peter H. Anderson, an educational BASIC Stamp enthusiast and Stamps in Class distributor at
http://www.phanderson.com.

Al Williams Consulting hosts the BASIC Stamp Project of the Month at http://www.al-williams.com.

Appendix B: PBASIC Quick Reference Guide

Page 96 • “What’s a Microcontroller?” Student Guide Version 1.4

Appendix B: PBASIC Quick Reference Guide

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 97

PBASIC Quick
Reference Guide

The Parallax BASIC Stamp Manual Version 1.9 consists of
approximately 450 pages of PBASIC command descriptions,
application notes, and schematics. The entire document is
available for download from http://www.parallaxinc.com and
http://www.stampsinclass.com in Adobe’s PDF format, but may
also be purchased by students and educational institutions.

This PBASIC Quick Reference Guide is a reduced version of BASIC Stamp II commands.

BRANCHING

IF...THEN
IF condition THEN addressLabel
Evaluate condition and, if true, go to the point in the program marked by addressLabel.
• Condition is a statement, such as “x=7” that can be evaluated as true of false.
• AddressLabel is a label that specifies where to go in the event that the condition is true.

BRANCH
BRANCH offset, [address0, address1, …address N]
Go to the address specified by offset (if in range).
• Offset is a variable / constant that specifies which of the listed address to go to (0-N).
• Addresses are labels that specify where to go.

GOTO
GOTO addressLabel
Go to the point in the program specified by addressLabel.
• AddressLabel is a label that specifies where to go.

GOSUB
GOSUB addressLabel
Store the address of the next instruction after GOSUB, then go to the point in the program specified by
addressLabel.
• AddressLabel is a label that specifies where to go.

RETURN
Return from subroutine – sends the program back to the address (instruction) immediately following the most
recent GOSUB.

Appendix B: PBASIC Quick Reference Guide

Page 98 • “What’s a Microcontroller?” Student Guide Version 1.4

LOOPING

FOR...NEXT
FOR variable = start to end {stepVal} …NEXT
Create a repeating loop that executes the program lines between FOR and NEXT, incrementing or
decrementing variable according to stepVal until the value of the variable pases the end value.
• Variable is a bit, nib, byte, or word variable used as a counter.
• Start is a variable or constant that specifies the initial value of the variable.
• End is a variable or constant that specifies the end value of the variable. When the value of the variable

passes end, the FOR . . . NEXT loop stops executing and the program goes on to the instruction after NEXT.
• StepVal is an optional variable or constant by which the variable increases or decreases with eachteip

through the FOR / NEXT loop. If start is larger than end, PBASIC2 understands stepVal to be negative, even
though no minus sign is used.

NUMERICS

LOOKUP
LOOKUP index, [value0, value1,... valueN], variable
Look up the value specified by the index and store it in a variable. If the index exceeds the highest index value
of the items in the list, variable is unaffected. A maximum of 256 values can be included in the list.
• index is a constant, expression or a bit, nibble, byte or word variable.
• value0, value1, etc. are constants, expressions or bit, nibble, byte or word variables.
• variable is a bit, nibble, byte or word variable.

LOOKDOWN
LOOKDOWN value, {??,} [value0, value1,... valueN], variable
• value is a constant, expression or a bit, nibble, byte or word variable.
• ?? is =, <>, >, <, <=, =>. (= is the default).
• value0, value1, etc. are constants, expressions or bit, nibble, byte or word variables.
• variable is a bit, nibble, byte or word variable.

Appendix B: PBASIC Quick Reference Guide

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 99

RANDOM
RANDOM variable
Generate a pseudo-random number.
• variable is a byte or word variable in the range 0..65535.

DIGITAL I/O

INPUT
INPUT pin
Make the specified pin an input (write a 0 to the corresponding bit of DIRS).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

OUTPUT
OUTPUT pin
Make the specified pin an output (write a 1 to the corresponding bit of DIRS).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

REVERSE
REVERSE pin
If pin is an output, make it an input. If pin is an input, make it an output.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

LOW
LOW pin
Make pin output low (write 1 to the corresponding bit of DIRS and 0 to the corresponding bit of OUTS).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

HIGH
HIGH pin
Make the specified pin output high (write 1s to the corresponding bits of both DIRS and OUTS).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

TOGGLE
TOGGLE pin
Invert the state of a pin.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

Appendix B: PBASIC Quick Reference Guide

Page 100 • “What’s a Microcontroller?” Student Guide Version 1.4

PULSIN
PULSIN pin, state, variable
Measure an input pulse (resolution of 2 µs).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• state is a constant, expression or a bit, nibble, byte or word variable in the range 0..1.
• variable is a bit, nibble, byte or word variable.
Measurements are in 2uS intervals and the instruction will time out in 0.13107 seconds.

PULSOUT
PULSOUT pin, period
Output a timed pulse by inverting a pin for some time (resolution of 2 µs).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• period is a constant, expression or a bit, nibble, byte or word
• variable in the range 0..65535 representing the pulse width in 2uS units.

BUTTON
BUTTON pin, downstate, delay, rate, workspace, targetstate, label
Debounce button, perform auto-repeat, and branch to address if button is in target state.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• downstate is a constant, expression or a bit, nibble, byte or word variable in the range 0..1.
• delay is a constant, expression or a bit, nibble, byte or word variable in the range 0..255.
• rate is a constant, expression or a bit, nibble, byte or word variable in the range 0..255.
• workspace is a byte or word variable.
• targetstate is a constant, expression or a bit, nibble, byte or word variable in the range 0..1.
• label is a valid label to jump to in the event of a button press.

Appendix B: PBASIC Quick Reference Guide

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 101

SHIFTIN
SHIFTIN dpin, cpin, mode, [result{\bits} { ,result{\bits}... }]
Shift bits in from parallel-to-serial shift register.
• dpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the data

pin.
• cpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the clock

pin.
• mode is a constant, symbol, expression or a bit, nibble, byte or word variable in the range 0..4 specifying

the bit order and clock mode. 0 or MSBPRE = msb first, pre-clock, 1 or LSBPRE = lsb first, pre-clock, 2 or
MSBPOST = msb first, post-clock, 3 or LSBPOST = lsb first, post-clock.

• result is a bit, nibble, byte or word variable where the received data is stored.
• bits is a constant, expression or a bit, nibble, byte or word variable in the range 1..16 specifying the

number of bits to receive in result. The default is 8.

SHIFTOUT
SHIFTOUT dpin, cpin, mode, [data{\bits} {, data{\bits}... }]
Shift bits out to serial-to-parallel shift register.
• dpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the data

pin.
• cpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the clock

pin.
• mode is a constant, symbol, expression or a bit, nibble, byte or word variable in the range 0..1 specifying

the bit order. 0 or LSBFIRST = lsb first, 1 or MSBFIRST = msb first.
• data is a constant, expression or a bit, nibble, byte or word variable containing the data to send out.
• bits is a constant, expression or a bit, nibble, byte or word variable in the range 1..16 specifying the

number of bits of data to send. The default is 8.

COUNT
COUNT pin, period, result
Count cycles on a pin for a given amount of time (0 - 125 kHz, assuming a 50/50 duty cycle).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• period is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535.
• result is a bit, nibble, byte or word variable.

Appendix B: PBASIC Quick Reference Guide

Page 102 • “What’s a Microcontroller?” Student Guide Version 1.4

XOUT
XOUT mpin, zpin, [house\keyorcommand{\cycles} {, house\keyorcommand{\cycles}... }]
Generate X-10 powerline control codes. For use with TW523 or TW513 powerline interface module.
• mpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the

modulation pin.
• zpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the zero-

crossing pin.
• house is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying the

house code A..P respectively.
• keycommand is a constant, expression or a bit, nibble, byte or word variable in the range 0..15 specifying

keys 1..16 respectively or is one of the commands shown for X-10 light control in the BASIC Stamp
Manual Version 1.9. These commands include lights on, off, dim and bright.

• cycles is a constant, expression or a bit, nibble, byte or word variable in the range 2..65535 specifying the
number of cycles to send. (Default is 2).

Appendix B: PBASIC Quick Reference Guide

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 103

SERIAL I/O

SERIN
SERIN rpin{\fpin}, baudmode, {plabel,} {timeout, tlabel,} [inputdata]
Serial input with optional qualifiers, time-out, and flow control. If qualifiers are given, then the instruction will
wait until they are received before filling variables or continuing to the next instruction. If a time-out value is
given, then the instruction will abort after receiving nothing for a given amount of time. Baud rates of 300 -
50,000 are possible (0 - 19,200 with flow control). Data received must be N81 (no parity, 8 data bits, 1 stop bit)
or E71 (even parity, 7 data bits, 1 stop bit).
• rpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..16.
• fpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• baudmode is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535.
• plabel is a label to jump to in case of a parity error.
• timeout is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535

representing the number of milliseconds to wait for an incoming message.
• tlabel is a label to jump to in case of a timeout.
• inputdata is a set of constants, expressions and variable names separated by commas and optionally

proceeded by the formatters available in the DEBUG command, except the ASC and REP formatters.
Additionally, the following formatters are available:

1. STR bytearray\L{\E} input a string into bytearray of length L with optional end-character of E. (0’s will fill remaining bytes).
2. SKIP L input and ignore L bytes.
3. WAITSTR bytearray{\L} Wait for bytearray string (ofL length, or terminated by 0 if parameter is not specified and is 6 bytes maximum).
4. WAIT (value {,value...}) Wait for up to a six-byte se-quence.

Appendix B: PBASIC Quick Reference Guide

Page 104 • “What’s a Microcontroller?” Student Guide Version 1.4

SEROUT
SEROUT tpin{\fpin}, baudmode, {pace,} {timeout, tlabel,} [outputdata]
Send data serially with optional byte pacing and flow control. If a pace value is given, then the instruction will
insert a specified delay between each byte sent (pacing is not available with flow control). Baud rates of 300 -
50,000 are possible (0 - 19,200 with flow control). Data is sent as N81 (no parity, 8 data bits, 1 stop bit) or E71
(even parity, 7 data bits, 1 stop bit).
• tpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..16.
• fpin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• baudmode is a constant, expression or a bit, nibble, byte or word variable in the range 0..60657.
• pace is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535 specifying a

time (in milliseconds) to delay between transmitted bytes. This value can only be specified if the fpin is not
specified.

• timeout is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535
representing the number of milliseconds to wait for the signal to transmit the message. This value can
only be specified if the fpin is specified.

• tlabel is a label to jump to in case of a timeout. This can only be specified if the fpin is specified.
• outputdata is a set of constants, expressions and variable names separated by commas and optionally

proceeded by the formatters available in the DEBUG command.

ANALOG I/O
PWM
PWM pin, duty, cycles
Output PWM, then return pin to input. This can be used to output analog voltages (0-5V) using a capacitor and
resistor.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• duty is a constant, expression or a bit, nibble, byte or word variable in the range 0..255.
• cycles is a constant, expression or a bit, nibble, byte or word variable in the range 0..255 representing the

number of 1ms cycles to output.

RCTIME
RCTIME pin, state, variable
Measure an RC charge/discharge time. Can be used to measure potentiometers.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• state is a constant, expression or a bit, nibble, byte or word variable in the range 0..1.
• variable is a bit, nibble, byte or word variable.

Appendix B: PBASIC Quick Reference Guide

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 105

SOUND

FREQOUT
FREQOUT pin, milliseconds, freq1 {,freq2}
Generate one or two sinewaves of specified frequencies (each from 0 - 32767 hz.).
• pin is a constant, expression or a bit, nibble, byte or word variable in the range of 0..15.
• milliseconds is a constant, expression or a bit, nibble, byte or word variable.
• freq1 and freq2 are constant, expression or bit, nibble, byte or word variables in the range 0..32767

representing the correspond-ing frequencies.

DTMFOUT
DTMFOUT pin, {ontime, offtime,}[key{,key...}]
Generate DTMF telephone tones.
• pin is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.
• ontime and offtime are constants, expressions or bit, nibble, byte or word variables in the range 0..65535.
• key is a constant, expression or a bit, nibble, byte or word variable in the range 0..15.

EEPROM ACCESS

DATA
DATA {pointer} DATA {@location,} {WORD} {data}{(size)} {, { WORD} {data}{(size)}...}
Store data in EEPROM before downloading PBASIC program.
• pointer is an optional undefined constant name or a bit, nibble, byte or word variable which is assigned

the value of the first memory location in which data is written.
• location is an optional constant, expression or a bit, nibble, byte or word variable which designates the

first memory location in which data is to be written.
• word is an optional switch which causes DATA to be stored as two separate bytes in memory.
• data is an optional constant or expression to be written to memory.
• size is an optional constant or expression which designates the number of bytes of defined or undefined

data to write/reserve in memory. If DATA is not specified then undefined data space is reserved and if
DATA is specified then SIZE bytes of data equal to DATA are written to memory.

Appendix B: PBASIC Quick Reference Guide

Page 106 • “What’s a Microcontroller?” Student Guide Version 1.4

READ
READ location, variable
Read EEPROM byte into variable.
• location is a constant, expression or a bit, nibble, byte or word variable in the range 0..2047.
• variable is a bit, nibble, byte or word variable.

WRITE
WRITE location, data
Write byte into EEPROM.
• location is a constant, expression or a bit, nibble, byte or word variable in the range 0..2047.
• data is a constant, expression or a bit, nibble, byte or word variable.

TIME
PAUSE
PAUSE milliseconds
Pause execution for 0–65535 milliseconds.
• milliseconds is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535.

POWER CONTROL

NAP
NAP period
Nap for a short period. Power consumption is reduced to 50 uA (assuming no loads).
• period is a constant, expression or a bit, nibble, byte or word variable in the range 0..7 representing 18ms

intervals.

SLEEP
SLEEP seconds
Sleep for 1-65535 seconds. Power consumption is reduced to approximately 50 µA.
• seconds is a constant, expression or a bit, nibble, byte or word variable in the range 0..65535 specifying

the number of seconds to sleep.

Appendix B: PBASIC Quick Reference Guide

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 107

END
END
• Sleep until the power cycles or the PC connects. Power consumption is reduced to approximately 50 µA.

PROGRAM DEBUGGING

DEBUG
DEBUG outputdata{,outputdata...}
Send variables to PC for viewing.
• outputdata is a text string, constant or a bit, nibble, byte or word variable. If no formatters are specified

DEBUG defaults to ascii character display without spaces or carriage returns following the value.

Appendix C: Reading the Resistor Color Code

“What’s a Microcontroller?” Student Guide Version 1.4 • Page 109

Reading the
Resistor Color
Code

Most common types of resistors have colored bands that
indicate their value. The resistors that we’re using in this series
of experiments are typically “1/4 watt, carbon film, with a 5%
tolerance”. If you look closely at the sequence of bands you’ll
notice that one of the bands (on an end) is gold. This is band

#4, & the gold color designates that it has a 5% tolerance.

Bands 1 through 3 tell us what the actual value is, measured in “ohms”. The higher the value, the less current
is permitted to flow through it (at a given voltage).

The color values are as follows:

Black 0
Brown 1
Red 2
Orange 3
Yellow 4
Green 5
Blue 6
Violet 7
Grey 8
White 9

To determine the value of a resistor, look at the first color, determine its value from the above chart & write
it down. Do the same for the second band. The third band “is the number of 0’s to write down”. For
example:

A resistor has the following color bands:

Band #1. = Red
Band #2. = Violet
Band #3. = Yellow
Band #4. = Gold

Looking at our chart above, we see that Red has a value of 2.

So we write: “2”.
Violet has a value of 7.
So we write: “27”

Appendix C: Reading the Resistor Color Code

Page 110 • “What’s a Microcontroller?” Student Guide Version 1.4

Yellow has a value of 4.
So we write: “27 and four zeros” or “270000”.

This resistor has a value of 270,000 ohms (or 270k) & a tolerance of 5%.

