

APP-IV ATmega
Development Kit

© 2004 by AWC

AWC
1279 FM 518 Rd #2

Kemah, TX 77565
(281) 334-4341

http://www.awce.com
V1.1 10 August 2004

Table of Contents
Overview.. 1
If You Need Help ... 1
What Else You'll Need ... 1
Features.. 2
Assembly ... 2

Testing ... 4

Programming.. 5
Using AVRStudio 4.. 5
Using gcc ... 7

About Cygwin .. 9

Debugging C with AVRStudio 4... 9

Debugging with Insight .. 9

Debugging Issues ... 10

Other Languages .. 11
System Environment .. 12
Resources ... 12
Connections to JP1/JP2 .. 13
C Language Libraries ... 14

I/O.. 14

Delays .. 14

A/D .. 15

Uart .. 15

LCD ... 16

Demo.. 16

1

Overview
The APP-IV allows you to develop ATMega (Atmel) code for the
powerful ATMega 8 microcontroller. The kit includes a special
ATMega 8 (28 pin microprocessor) that operates at 10MHz and a
10MHz resonator. It also includes a PC board (the GPMPU40)
which allows you to provide power to the board, connect an RS-
232 cable to the board, and optionally plug the board into a
standard solderless breadboard. See the enclosed manual for the
GPMPU40 for more information about this board (including
assembly instructions).

If You Need Help
If you require assistance, please feel free to contact us. The best
way to get support is via e-mail (stamp@al-williams.com).
However, you may also call between 9AM - 4PM Central Time at
(281) 334-4341. You can also fax to (281) 754-4462. Be sure to
check out our Web page for updates at www.al-
williams.com/awce.

What Else You'll Need
In addition to the APP-IV kit, you'll also need a few other easy to
obtain items:

• A solderless breadboard

• An unregulated power supply (DC between 8 and 13V) or a
5V regulated power supply.

• Development software (assembly and C options are
described later in this manual)

• A serial cable (a DB9 male to female, if you are using a
PC).

2

Features
The ATMega 8 core of the APP-IV has A/D inputs, digital I/O, and
a hardware serial port usable by your programs. The device has 1K
bytes of RAM, 512 bytes of EEPROM, and nearly 8K of program
space (512 bytes are reserved). The chip achieves speeds of 10
MIPS with the supplied ceramic resonator.

Assembly
Please refer to the enclosed GPMPU40 manual for assembly
instructions. There is only one modification required on the board.
Place a two pin male header in pins 4 and 5 of the JP7 connector.
Leave the other holes of this connector empty. Remember, pin 1 of
the ICSP connector is closest to the mounting hole at the corner of
the board – be careful not to get this connector backwards.

The two-pin header you install will allow you to select
programming mode or execution mode by placing (or removing) a
jumper on these two pins. With the jumper in place, the APP-IV
will allow programming (via the download software). When the
jumper is not present, the APP-IV will run your program.

The small pushbutton switch provided fits in the RESET holes
instead of a two pin jumper. There are no connections required for
JP6, nor are any capacitors required for C7 and C8 (these are built
into the ceramic resonator which installs at X1). Note that the
resonator can go in facing either direction. The center pin is ground
and the outer two pins are interchangeable. T1 is not required. Be
sure that the five electrolytic capacitors are installed properly (note
the + marking on the PC board).

3

The APP-IV’s CPU (an ATMega 8) is installed so that pin 1 of the
IC lines up with pin 1 of IC1. Note that the 28 pin IC fits in the
inner set of holes. You can use the outer set of holes along with
JP3 and JP4 to make connections between the CPU and other
circuitry on the board. Here are the connections you must make
from the GPMPU40 subsystems to the APP-IV CPU:

Connection 1 Connection 2 Note

JP5-T JP5-2 RS232 connection

JP5-R JP5-3 RS232 connection

RS-T IC1-3 TX

RS-R IC1-2 RX

RST (either pin) IC1-1 Reset

RST (either pin) JP8-1*** (closest to mounting
hole)

Reset for optional programmer

Vcc IC1-7, IC1-32*, IC1-33* +5V

Ground IC1-8, IC1-34** Ground

CLK (either pin) IC1-9 Clock

CLK (either pin) IC1-10 Clock

JP8-2 IC1-29*** MOSI (pin 17)

JP7-3 IC1-30*** MISO (pin 18)

JP7-4 IC1-31 SCK/Program select (pin 19)

JP7-5 Ground Ground

JP7-6 Vcc +5V for optional programmer

*IC1-32 and IC1-33 are AVcc and ARef; you may wish to make custom connections if you are using
the A/D.
**IC1-34 is AGnd; you may wish to make a custom connection if you are using the A/D.
***These connections are only used for a typical AVR programmer like our XCP-1 board. You do not
need this type of programmer and, in fact, using one will erase the APP-IV firmware. To use such a
programmer, you’d need to install a 6 pin header at JP8.

4

Testing
The APP-IV is shipped with a test program already on board. To
run the test, you’ll need to connect the board to a computer running
a terminal program with a normal straight cable. In addition, if you
want to run all of the test program’s functions (which is not strictly
necessary) you’ll want to connect an LED (with appropriate
dropping resistor; say 470 ohms) to PC.5 (pin 28). The “banded”
end of the LED will connect to ground and the other end will
connect to PC.5 through the resistor. If you wish to experiment
with the A/D converter, you can connect ground or a voltage less
than 5V to pin 23. Do not connect pin 23 directly to 5V! A
breadboard is useful for making these connections. However, you
don’t need the LED or analog connections to see that the board
will pass the test.

Remove the shorting cap on the programming header and connect
a PC running a terminal program (such as Hyperterminal) to the
serial port. The terminal program should be set up for 19200 baud,
8 bits, 1 stop bit, no parity, and no handshaking (very important).
Of course, you should set it for the COM port you are using with
the APP-IV.

When you power up the APP-IV, you should see a display like the
one below:

5

Congratulations! Your APP-IV is working. Now you can do some
programming.

Programming
The APP-IV emulates a standard AVR910 serial programmer. That
means that you can use any compatible download program to send
a hex file to it. You can use WinAVR (supplied with AVR Studio),
UISP, or AVRDude. We recommend UISP, although any of these
programs will work, and any software that supports the AVR910
protocol should work.

You’ll use a development tool such as AVR Studio or gcc to
produce a programming file. This is usually a .hex (Intel format) or
.s19 (Motorola format) file. The programmer will download this
file down to the APP-IV. To enter programming mode, you must
install the jumper on pin 4 and 5 of JP8 and press the reset button.

Using AVRStudio 4
You can download an example AVR Studio project from our Web
site (see http://www.awce.com/app4.htm). You’ll also find detailed
instructions there. Once the project is built, you can start AVRProg
from the Tools menu and follow this procedure to download the
program:

1. Start AVRStudio 4.

2. Use the Welcome dialog or the Project | Open menu to
open the ademo.aps project you downloaded from the Web.

3. Use the Project | Build menu to build the project; observe
that there are no errors.

4. Make sure the APP-IV is powered up, the programming
jumper is installed, and you’ve pressed the reset button.
Also, be sure no other programs have the serial port open
(including another copy of AVR Prog).

6

5. Select Tools | AVR Prog… from the menu.

6. Use the Browse button to select the ademo.hex file (if
you’ve done these steps before, it will already be selected,
in which case you can skip this step).

7. Press the (Flash) Program button. You may get a message
about “Flushing” which you can dismiss.

8. After completion, use the “X” button in the window’s title
bar to close AVR Prog. Do not use the Exit button.

9. Remove the jumper cap and press reset to start your
program.

Keep in mind that you may find it easier to use uisp or AVRDude,
both of which can program the hex file. A typical uisp command
line would look like this (all on one line, of course):

uisp -dprog=avr910 -dpart=auto -dserial=/dev/com1 --erase --upload
if=ademo.hex --verify –v

For AVRDude, you would issue the command:

avrdude -patmega8 -P/dev/com1 -c avr910 -Uf:w:ademo.hex:i

Keep in mind that in either case some versions of Cygwin will
expect you to use com1 instead of /dev/com1.

7

Using gcc
You can download gcc for Linux or WinAVR (pronounced
“whenever”) for Windows by referring to the Resources section. In
either event, you’ll be able to write C programs with this powerful
compiler. At http://www.awce.com/app4.htm you will find a
sample makefile plus several library files:

1. app4io – Simplifies digital I/O operations

2. app4delay – Programs various delays easily

3. app4adc – Read the A/D converters

4. app4uart – Read and write the serial port

5. app4lcd – Drive a standard 4-bit LCD

If you’ve written a C program (or want to use the demo program
from the Web site) you need to follow these steps:

1. Open a shell and navigate to the directory that contains the
C project

2. Open makefile with a text editor and change the
PROGPORT line to indicate the port you are using to talk
to the APP-IV. If you are not using uisp, change the
PROGRAMMER line accordingly.
Notice that these lines will not require future changes
unless your setup changes.

3. If you are not using the demo program, copy the demo
program’s makefile to your project directory and make the
following changes:
 a) Change TARGET to reflect the name of your project
 b) Change the SRC+= line to choose other files to compile
You may wish to verify that PROGPORT and
PROGRAMMER are set correctly. You may wish to

8

change some of the other lines, but for most projects they
will be fine as they are.

4. Run “make” – this will build your program and generate a
hex file.

5. Run “make program” – this will program the chip (and
build any files that are out of date). The makefile will
prompt you to set the jumper and press reset on the board.

6. Remove the jumper cap and press reset to start your
program.

The program keyword is a “make target” that tells make not only
to build the program, but to do other commands (in this case,
program the chip). There are several targets available:

• all – Do everything.

• clean – Erase output files.

• coff – Make coff debugging file (use with AVR
Studio 3).

• extcoff – Make extended coff (use with AVR Studio
4).

• program – Program device.

In addition, if you provide the program name with a .s suffix as a
make target, make will produce a file of assembly language instead
of a hex file. For example, if you run “make demo.s” on the demo
project, the file demo.s will have the assembly language equivalent
of the C program.

9

About Cygwin
If you use WinAVR, the installer will load a copy of the Cygwin
environment to your PC. Cygwin is an open source program that
makes your Windows operating system behave like Linux. There
are two things to be wary of with Cygwin. First, if you already use
Cygwin, you’ll have to rename (or otherwise hide) WinAVR’s
cygwin1.dll file or all of your Cygwin programs will be confused
because they will find two copies of the Cygwin DLL. If you
encounter unexpected problems, you can try taking your normal
Cygwin installation off of your PATH and reverting to the one that
ships with WinAVR. It is possible that the version of Cygwin you
use does not work properly with WinAVR, although usually any
newer version will work.

The other thing you should note is that some versions of Cygwin
name the serial ports using /dev. So to specify COM1 to UISP or
AVRDude, you may have to use /dev/com1 or you may have to
use com1. If in doubt, try both and see which one works.

Debugging C with AVRStudio 4
It is possible to debug C programs using AVRStudio 4 under
Windows. You must first create an extended coff file using the
makefile. Simply run “make extcoff” from the shell.

Start AVRStudio and (for the demo program) open demo.cof.
From the resulting dialog, select AVR Simulator as the platform
and ATmega8 as the device. Note this is a PC-based simulation. It
does not debug the part in circuit. Press Finish and you are ready to
debug C code using AVRStudio.

Debugging with Insight
You can also debug with gcc’s debugger, although the simulation
of AVR devices is not as complete as that of AVRStudio.

To start debugging, issue the command “make debug” which will
do a build and launch the simulator plus insight (a graphical
version of gdb, the debugger). If you are using Cygwin, you must

10

have X windows running for this to work. Also, if you are using
Linux, you’ll need to reconfigure the START variable in the
makefile to be empty.

Once insight starts, you must follow these steps:

1. Select Run | Connect to Target. If the target settings box
appears, select GDBserver/TCP as the target, localhost as
the hostname, and 1212 as the port (the port should be 1212
– you can check the simulator window to be sure).

2. Select Run | Download to load the program into the
simulator.

3. Do not use the Run | Run command!

4. To execute the program, use Control | Continue. You may
want to set breakpoints first. You can view the files in your
project by selecting them from the leftmost combo box.

5. When you are done debugging, close insight and the
simulator window separately.

Debugging Issues
Keep in mind that debugging is a simulation and does not use the
APP-IV at all. Therefore, the APP-IV doesn’t even have to be
connected to the PC for debugging. However, it also means that
code that expects actions from I/O devices may hang. For example,
UART code that is waiting for a received character will never
complete. In some cases, you can use the simulator to “fake” an
input bit. In other cases, you can pause the debugger, set the next
statement to be past the portion that hangs, and then resume the
program. Of course, you can also replace problem areas with
debugging-specific code that provides simulated input.

11

Other Languages
Most other languages that can target the ATmega 8 will work with
the APP-IV. AWC’s SeaBass, for example, provides a Basic-like
language that works in conjunction with the GNU C compiler. As
another example, MCS makes the BASCOM/AVR Basic compiler
(you can download a free demo version that is limited to 2K of
program space). You can use BASCOM to write Basic programs
for the APP-IV.

Although the BASCOM programmer supports the AVR910
protocol, it doesn’t understand the signature for the ATmega 8, so
you will have to use a different programmer as described above. If
you don’t want to manually operate the programming software,
you can download the bascompgm.bat and bascompgm.sh files
from our Web site. These files will allow you to use UISP from
within BASCOM.

You’ll need to edit the files to set your specific path information
and COM port. Inside BASCOM, select Options | Programmer and
pick “External Programmer” in the drop down box. On the “Other”
tab, you’ll enter either cmd.exe (for Windows NT/2000/XP) or
command.com (for Windows 95/98/ME) in the Program box. For
the parameters, you’ll enter something like this:

/c c:\app4\bdemo\bascompgm.bat {FILE}

Naturally, you’ll need to adjust the path to suit your system. The
{FILE} keyword will be replaced by the correct file name by
BASCOM.

The final step is to make sure the “Use HEX file” box is checked.
Once these steps are complete, you can use UISP from within
BASCOM to program flash memory. Note that if your program is
using EEPROM data you may need to modify these scripts
slightly.

12

System Environment
When using the APP-IV, the ATmega 8 is at your disposal with a
few caveats:

1. The top of flash memory is at 0x1BFF

2. Pin 5 of PORTB is the program select pin. On reset, the
device enables the pull up resistor on this pin and samples
it. If you wish, you can use this pin as an output during
program execution as long as the circuitry connected does
not interfere with the sampling process on reset. You could
also use the pin for an input if you were certain it would not
be low during a reset (for example, a push button switch).
However, for production use, we recommend not using this
pin at all, but simply tying to ground to prevent accidental
entry into program mode.

Resources
http://www.al-williams.com/app4.htm – Examples and files

http://tutor.al-williams.com - Tutorials

http://www.atmel.com/products/avr/ -AVRStudio and AVRProg

www.avrfreaks.net/AVRGCC/ - Windows C language tools and
programmers

http://cdk4avr.sourceforge.net/ - Linux C language tools and
programmers

http://www.nongnu.org/avr-libc/user-manual/index.html - C library
documentation

http://www.awce.com/seabass.htm - Basic language tool

http://www.avrfreaks.com – Many links and resources

http://www.openavr.org/ - Resources

13

Connections to JP1/JP2
For the purposes of this table, JP1 and JP2 are numbered
sequentially from 1 to 40. The last pin of JP1 is pin 20, and the
first pin of JP2 is 21.

JP1/2 pin Signal ATMega 8 Pin Note

1 RESET 1 Connected to reset circuit
2 RX 2 Connected to RS232
3 TX 3 Connected to RS232
4 PD2 4
5 PD3 5
6 PD4 6
7 Vcc 7
8 Gnd 8
9 XTAL1 9 Connected to clock
10 XTAL2 10 Connected to clock
11 PD5 11
12 PD6 12
13 PD7 13
14 PB0 14
27 PB1 15
28 PB2 16
29 PB3 17 MOSI (on JP8 for external programmer)
30 PB4 18 MISO (on JP8 for external programmer)
31 PB5 19 SCK (also used as program select jumper)
32 AVCC 20
33 AREF 21
34 AGND 22
35 PC0 23 PC0-PC5 also analog inputs
36 PC1 24
37 PC2 25
38 PC3 26
39 PC4 27
40 PC5 28

14

C Language Libraries
The APP-IV has several libraries you can download for free. Some
of these have been adapted from public domain or open source
libraries (see the header files for appropriate credits).

I/O
The app4io.h file contains several macros which simplify digital
I/O (although they may not be as efficient as manually coding
digital I/O operations):

HIGH(port, pin) – Set pin of PORT to high. The pin is forced to
output status. Example: HIGH(B,1);

LOW(port, pin) – Same as HIGH, but forces pin low.

TOGGLE(port, pin) – Same as HIGH but toggles output from
high to low, or low to high.

OUTPUT(port, pin) – Make pin an output.

INPUT(port, pin) – Make pin an input.

REVERSE(port, pin) – Make an output pin an input or vice versa.

IREAD(port, pin) – Read input from port. Forces pin to an input
and return 1 or 0.

BIN(num) – Specifies a number in binary Example: x=BIN(1101);

Delays
The app4delay.h file allows you to easily implement delays:

delay_ms(ms) – Delay for ms number of milliseconds.

delay_us(us) – Delay for us number of microseconds.

15

A/D
The app4adc.h file contains functions that allow you to work with
the A/D converter. If you set ADC_NOISE_REDUCTION to 1,
the library will force other A/D pins to low digital outputs which
significantly improves the measurement noise. However, it means
you should not have anything connected to the A/D pins that
would be damaged by shorting them to ground. In particular, do
not connect +5V directly to the A/D pins when using this mode.

adc_init() – Initialize the A/D converter library.

adc_convert(chan) – Returns an integer reading for the specified
channel (0-5 or ADC_CH0 to ADC_CH5).

Uart
You can use the APP-IV’s serial port by calling the routines in
app4uart.h.

UartInit(baud) – Initialize the port at a particular baud rate (use
defined constants like BAUD_9600 or the BAUD macro). This
sets 8 bits, no parity, 1 stop bit.

UartRead(timeout) – Reads a character. If timeout is 0, this call
will not return until a character is available. If timeout is not 0, it
indicates the number of loops the code will wait for a character.
The TOMULT definition allows you to adjust the exact value of
the timeout delay. Returns 0 in the case of a timeout.

UartWrite(c) – Write a character to the UART.

UartReady() – Returns 0 if no characters are available and non-
zero if there is a character waiting to be read.

UartSetStdio() – Sets the UART to be the standard I/O device
(for calls like printf or gets).

16

LCD
You can connect a standard 4-bit LCD to the APP-IV and
communicate with it using routines defined in app4lcd.h. Use the
macros in this file to describe your LCD and the connections to the
APP-IV.

lcd_init(set) – Initialize LCD (see app4lcd.h for set values).

lcd_clear() – Clear the LCD.

lcd_home() – Set cursor to home.

lcd_gotoxy(x,y) – Set cursor position.

lcd_putc(c) – Write character to LCD.

lcd_puts(string) – Write string to LCD.

lcd_puts_p(pstring) – Like lcd_puts, but takes string from
program memory.

lcd_puts_P(string) – A macro that automatically creates
constant strings in program memory.

lcd_setstdio() – Sets stdout to LCD (and sets stdin to NULL).
Writing a form feed (0xC) to the output stream will clear the LCD.

Demo
The demo program (available online) demonstrates most of the
library functions.

	Title Page
	Table of Contents
	Overview
	If You Need Help
	What Else You'll Need
	Features
	Assembly
	Testing

	Programming
	Using AVRStudio 4
	Using gcc
	About Cygwin
	Debugging C with AVRStudio 4
	Debugging with Insight
	Debugging Issues

	Other Languages
	System Environment
	Resources
	Connections to JP1/JP2
	C Language Libraries
	I/O
	Delays
	A/D
	Uart
	LCD
	Demo

